2.181. Избавьтесь от иррациональности в знаменателе дроби:

a)
$$\frac{14}{\left(\sqrt[4]{10} - \sqrt[4]{3}\right)\left(\sqrt{10} + \sqrt{3}\right)}$$
;

6)*
$$\frac{12}{\sqrt[4]{5}-1}$$
.

2.182. Найдите значение выражения:

a)
$$\frac{5}{\sqrt[4]{7} - \sqrt[4]{2}} + \frac{5}{\sqrt[4]{7} + \sqrt[4]{2}}$$
;

a)
$$\frac{5}{\sqrt[4]{7} - \sqrt[4]{2}} + \frac{5}{\sqrt[4]{7} + \sqrt[4]{2}};$$
 $5) \div \frac{\sqrt[3]{\left(6 + \sqrt{35}\right)^2}}{\sqrt[3]{\sqrt{35} - 6}} + \sqrt{35}.$

2.183. Найдите значение аргумента, при котором значение функции $g(x) = 1 - x^2$ pasho:

- a) 0;
- б) 0,19;
- в) 1.

2.184. Для функции $h(x) = \sqrt{9-2x}$ найдите, если это возможно:

- a) h(0):
- б) h(2,5); в) h(-20);

2.185. Найдите, во сколько раз и на сколько порядков число $1,2 \cdot 10^{10}$ больше числа $3 \cdot 10^7$.

2.186. Решите уравнение $1 - \frac{2x^2 - x - 45}{5 - x} = 0$.

2.187. Точка P_lpha единичной окружности имеет координаты $P_lpha\Big(rac{1}{3};\;-rac{2\sqrt{2}}{3}\Big)$. Найдите значения $\sin\alpha$, $\cos\alpha$, $\tan\alpha$ и $\cot\alpha$.

2.188. Используйте метод интервалов и решите неравенство:

a)
$$(x + 2)(x + 5)^2(2x - 7) \le 0$$
; 6) $(x^2 - 6x + 5)(x^2 - 1) \ge 0$.

6)
$$(x^2 - 6x + 5)(x^2 - 1) \ge 0$$
.

§ 16. Свойства и график функции $y = \sqrt[n]{x} \ (n > 1, n \in N)$

2.189. Выберите точку, принадлежащую графику функции $y = \sqrt{x}$:

- a) (3; 9);
- б) (16; 4);
- B) (9; -3);
- г) (16; -4).

2.190. Найдите область определения функции $y = \sqrt{(x-5)(-x-3)}$.

2.191. Множеством значений функции $y = 2\sqrt{x} + 5$ является промежуток:

- a) $(0; +\infty)$;
- б) [0; +∞);
- в) $[5; +\infty);$ г) (0; 5); д) $(5; +\infty).$

Выберите правильный ответ.

Зависимость, при которой каждому неотрицательному числу ставится в соответствие значение корня заданной четной степени, задает функцию $y = \sqrt[n]{x}$, где n— четное число.

Действительно, по свойствам арифметического корня существует единственный арифметический корень четной степени из неотрицательного числа, значит, каждому неотрицательному x соответствует единственное значение $y=\sqrt[\eta]{x}$.

При n=2 функция принимает вид $y=\sqrt{x}$, свойства которой рассматривались в 8-м классе.

Для любого действительного числа существует единственный корень нечетной степени (по свойствам корня нечетной степени).

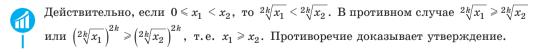
Рассмотрим свойства функции $y = \sqrt[n]{x}$ для четных и нечетных показателей корня.

Функция
$$y = \sqrt[2k]{x}$$
, где $k \in N$

- **1.** Область определения функции. По свойству арифметического корня $D = [0; +\infty)$.
- 2. Множество значений функции. Наибольшее и наименьшее значения функции. По определению арифметического корня из числа: $y \ge 0$ и $y^{2k} = x$. По свойству степени с натуральным показателем для любого $y \in [0; +\infty)$ существует значение $y^{2k} = x$, $x \ge 0$, т. е. множеством значений функции $y = \sqrt[2k]{x}$, $k \in N$, является множество неотрицательных чисел: $E(y) = [0; +\infty)$.

При x=0 функция принимает наименьшее значение y=0. Наибольшего значения у функции не существует.

- 3. Нули функции. Так как y=0, т. е. $\sqrt[2k]{x}=0$, при x=0, то значение x=0 является единственным нулем функции.
 - **4.** Промежутки знакопостоянства функции. y > 0 при всех $x \in (0; +\infty)$.
- **5. Промежутки монотонности функции.** Функция возрастает на всей области определения.



6. Четность (нечетность) функции. Так как область определения функции не симметрична относительно начала координат, то функция не является четной и не является нечетной.

7. График функции. Графики функций $y = \sqrt[n]{x}$ при n = 2, n = 4, n = 6 изображены на рисунке 120.

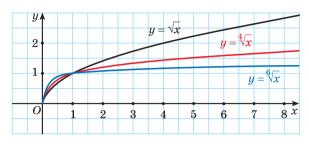


Рис. 120

Функция
$$y = \sqrt[2k+1]{x}$$
, где $k \in N$

- **1.** Область определения функции. По свойству корня нечетной степени $D = (-\infty; +\infty)$.
- 2. Множество значений функции. Наибольшее и наименьшее значения функции. По определению корня $y^{2k+1} = x$. По свойству степени с натуральным показателем для любого $y \in (-\infty; +\infty)$ существует x. Таким образом, множеством значений функции $y = \sqrt[2k+1]{x}$, где $k \in \mathbb{N}$, является множество всех действительных чисел: $E = (-\infty; +\infty)$.

Наибольшего и наименьшего значений у функции $y = \sqrt[2k+1]{x}$ не существует.

- 3. Нули функции. Так как y=0, т. е. $\sqrt[2k+1]{x}=0$, при x=0, то значение x=0 является единственным нулем функции.
- **4.** Промежутки знакопостоянства функции. y > 0, если $x \in (0; +\infty)$; y < 0, если $x \in (-\infty; 0)$.
- **5. Промежутки монотонности функции.** Функция возрастает на всей области определения.
- Если $x_1 < x_2$, то $2k+1\sqrt[4]{x_1} < 2k+1\sqrt[4]{x_2}$. В противном случае $2k+1\sqrt[4]{x_1} \geqslant 2k+1\sqrt[4]{x_2}$ или $\left(2k+1\sqrt[4]{x_1}\right)^{2k+1} \geqslant \left(2k+1\sqrt[4]{x_2}\right)^{2k+1}$, т. е. $x_1 \geqslant x_2$. Противоречие доказывает утверждение.
- **6. Четность (нечетность) функции.** Так как область определения функции $y = \sqrt[2k+1]{x}$ симметрична относительно начала координат и $y(-x) = \sqrt[2k+1]{-x} = -\sqrt[2k+1]{x} = -y(x)$, то функция является нечетной. Ее график симметричен относительно начала координат.

7. График функции. Графики функций $y = \sqrt[n]{x}$ при n = 3, n = 5 изображены на рисунке 121.

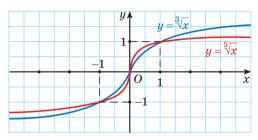


Рис. 121

0

Примеры основных заданий и их решения

1. Найдите область определения функции:

a)
$$y = \sqrt[6]{2x^2 - 3x + 1}$$
; 6) $y = \sqrt[3]{2x^2 - 3x + 1}$.

6)
$$y = \sqrt[3]{2x^2 - 3x + 1}$$

Решение. а) Так как область определения корня четной степени есть множество неотрицательных чисел, то подкоренное выражение должно быть неотрицательным. Решим неравенство $2x^2 - 3x + 1 \ge 0$, получим $x \in (-\infty; 0.5] \cup [1; +\infty)$. $D = (-\infty; 0.5] \cup [1; +\infty)$.

- б) Так как область определения корня нечетной степени есть множество всех действительных чисел, то подкоренное выражение может принимать любые значения при $x \in (-\infty; +\infty)$. $D = (-\infty; +\infty)$.
- 2. Найдите множество значений функции:

a)
$$h(x) = 2\sqrt[8]{x} + 3$$
; 6) $f(x) = \sqrt[5]{x} - 7$.

6)
$$f(x) = \sqrt[5]{x} - 7$$
.

Решение. a) Множеством значений функции $y = \sqrt[8]{x}$ является промежуток $[0; +\infty)$, т. е. $\sqrt[8]{x} \ge 0$. По свойству неравенств: $2\sqrt[8]{x} \ge 0$, $2\sqrt[8]{x} + 3 \ge 3$, значит, $E(h) = [3; +\infty)$.

- б) Множеством значений функции $y = \sqrt[5]{x}$ является множество всех действительных чисел $(-\infty; +\infty)$. Значит, и множеством значений функции $f(x) = \sqrt[5]{x} - 7$ является множество всех действительных чисел, т. е. $E(f) = (-\infty; +\infty)$.
- **3.** Определите наименьшее значение функции $f(x) = 3\sqrt[6]{x} + 7$.

Решение. Так как функция $y = \sqrt[n]{x}$ для четных n имеет наименьшее значение, равное нулю, при x = 0, то $3\sqrt[6]{x} \ge 0$, а $3\sqrt[6]{x} + 7 \ge 7$. Следовательно, наименьшее значение данной функции равно 7 и достигается при x=0.

4. Найдите нули функции:

a)
$$y = \sqrt[6]{2x^2 - 3x + 1}$$
; 6) $y = \sqrt[7]{2 - x^2}$.

6)
$$y = \sqrt[7]{2 - x^2}$$
.

Решение. а) Так как значение корня п-й степени равно нулю, если его подкоренное выражение равно нулю, то решим уравнение $2x^2 - 3x + 1 = 0$. Его корни x = 1 и x = 0.5 являются нулями функции $y = \sqrt[6]{2x^2 - 3x + 1}$.

- б) Так как значение корня n-й степени равно нулю, если его подкоренное выражение равно нулю, то решим уравнение $2 - x^2 = 0$. Его корни $x = \sqrt{2}$ и $x = -\sqrt{2}$ являются нулями функции $y = \sqrt[7]{2 - x^2}$.
- 5. Какие значения принимает функция на указанных промежутках:

a)
$$f(x) = \sqrt[5]{x}, x \in [1; 32];$$

6)
$$g(x) = \sqrt[12]{x}, x \in [-2; 2];$$

B)
$$h(x) = \frac{12}{\sqrt{|x|}}, x \in [-2; 2];$$

a)
$$f(x) = \sqrt[5]{x}$$
, $x \in [1; 32]$; 6) $g(x) = \sqrt[12]{x}$, $x \in [-2; 2]$;
B) $h(x) = \sqrt[12]{|x|}$, $x \in [-2; 2]$; $p(x) = \sqrt[3]{|x|}$, $x \in (-\infty; +\infty)$?

Решение. a) Так как $\sqrt[5]{x} \ge 0$ для $[0; +\infty)$, то f(x) принимает положительные значения для $x \in [1; 32]$.

- б) Так как $D(\sqrt[12]{x}) = [0; +\infty)$, то функция g(x) не определена для отрицательных значений x из промежутка [-2; 2].
- в) Так как $|x| \ge 0$, то функция $h(x) = \frac{12}{3} |x|$ принимает неотрицательные значения для $x \in [-2; 2]$.
- г) Так как $|x| \geqslant 0$, то функция $p(x) = \sqrt[3]{|x|}$ принимает неотрицательные значения для $x \in (-\infty; +\infty)$.
- **6.** Расположите числа $\sqrt{6}$; $2\sqrt[6]{3}$; $\sqrt[3]{15}$ в порядке возрастания.

Решение. Запишем числа $\sqrt{6}$; $2\sqrt[6]{3}$; $\sqrt[3]{15}$ в виде корней с одинаковыми показателями:

$$\sqrt{6} = \sqrt[6]{6^3} = \sqrt[6]{216}; \ \ 2\sqrt[6]{3} = \sqrt[6]{2^6 \cdot 3} = \sqrt[6]{192}; \ \sqrt[3]{15} = \sqrt[6]{15^2} = \sqrt[6]{225}.$$

Поскольку функция $f(x) = \sqrt[6]{x}$ возрастает на промежутке $[0; +\infty)$, то $\sqrt[6]{192} < \sqrt[6]{216} < \sqrt[6]{225}$, значит, $2\sqrt[6]{3} < \sqrt{6} < \sqrt[3]{15}$.

- 7. Какой (четной или нечетной) является функция:

 - B) $h(x) = \frac{12}{3}|x|$; $p(x) = \frac{3}{3}|x|$?

Решение. a) Функция $f(x) = \sqrt[5]{x}$ является нечетной, так как $y = \sqrt[n]{x}$ при нечетном n есть нечетная функция.

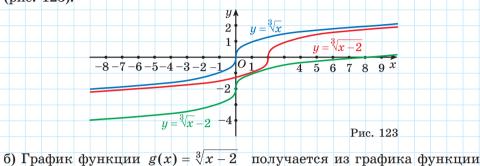
- б) Функция $g(x) = \sqrt[12]{x}$ ни четная, ни нечетная, так как $y = \sqrt[n]{x}$ при четном n не является четной и не является нечетной функцией.
- в) Так как область определения функции $h(x) = \frac{12}{x}$ есть множество всех действительных чисел и h(-x) = h(x), то функция четная.
- г) Так как область определения функции $p(x) = \sqrt[3]{x}$ есть множество всех действительных чисел и p(-x) = p(x), то функция четная.
- 8. Постройте график функции:
 - a) $f(x) = \sqrt[4]{x} + 2;$ 6) $f(x) = \sqrt[4]{x+2}$.

Решение. а) График функции $f(x) = \sqrt[4]{x} + 2$ получается из графика функции $y = \sqrt[4]{x}$ сдвигом на 2 единицы вверх вдоль оси ординат (рис. 122).

б) График функции $f(x) = \sqrt[4]{x+2}$ получается из графика функции $y = \sqrt[4]{x}$ сдвигом на 2 единицы влево вдоль оси абсцисс (см. рис. 122).

- 9. Постройте график функции:
 - a) $g(x) = \sqrt[3]{x} 2;$
- 6) $g(x) = \sqrt[3]{x-2}$.

Решение. а) График функции $g(x) = \sqrt[3]{x} - 2$ получается из графика функции $y = \sqrt[3]{x}$ сдвигом на 2 единицы вниз вдоль оси ординат (рис. 123).



 $y = \sqrt[3]{x}$ сдвигом на 2 единицы вправо вдоль оси абсцисс (см. рис. 123).

Выберите значения переменной, входящие в область определения функции

 $y = \sqrt[2n]{x}, n \in \mathbb{N}$:

- a) 7,2; 6) -14; B) $1-\sqrt{2}$; r) $\sqrt{5}-2$.

- **2.192.** Для функции $f(x) = \sqrt[3]{x}$ найдите: f(0); f(1); f(-8); $f(\frac{1}{216})$; $f(-3\sqrt{3})$.
- **2.193.** Найдите значение функции $g(x) = \sqrt[4]{x-1}$ при значении аргумента, равном: 1; 2; $1\frac{1}{16}$; 82; 1,0625; 10.
- **2.194.** Из чисел 3; -2; $\sqrt{3}-2$; $5\sqrt[5]{5}$; $1-\sqrt{7}$; 0 выберите числа, не принадлежащие области определения функции $y = \sqrt[10]{x}$.
- **2.195.** Для функции $f(x) = \sqrt[6]{x}$ найдите значение аргумента, при котором значение функции равно: 0; 1; $\frac{1}{2}$; $\sqrt[6]{7}$; $\sqrt[3]{2}$.
 - **2.196.** Может ли функция y = f(x) принимать значение, равное –15, если:

 - a) $f(x) = \sqrt[8]{x}$; 6) $f(x) = \sqrt[5]{x}$?
 - **2.197.** Выберите точки, через которые проходит график функции $y = \sqrt[4]{x}$:
 - a) A(16; 2);
- 6) $B(\frac{1}{81}; \frac{1}{3});$
- в) *C*(-1; 1);

г) D(0,0001; 0,1); д) E(625; -5); е) $F(3; \sqrt[4]{3}).$

Укажите еще какие-либо две точки, принадлежащие графику функпии $u = \sqrt[4]{x}$.

2.198. Дана функция $y = \sqrt[n]{x}$. Найдите n, если известно, что график данной функции проходит через точку:

a)
$$A\left(-\frac{1}{32}; -\frac{1}{2}\right);$$

б) B(0,0081; 0,3); в) $C(7\sqrt{7}; \sqrt{7}).$

B)
$$C(7\sqrt{7};\sqrt{7})$$
.

2.199. Найдите область определения функции:

a)
$$f(x) = \sqrt[4]{2 - 7x}$$
;

6)
$$f(x) = \frac{3}{\sqrt[5]{5-6x}};$$

B)
$$f(x) = \frac{8}{\sqrt[6]{2x^2 - 5x + 2}};$$
 $f(x) = \sqrt[4]{\frac{x - 1}{x - 5}}.$

$$f(x) = \sqrt[4]{\frac{x-1}{x-5}}.$$

2.200. Найдите область определения функции:

a)
$$f(x) = \frac{\sqrt[4]{x-1}}{\sqrt[4]{x-5}};$$

6)
$$f(x) = \frac{x-2}{\sqrt[7]{10-x}} + \sqrt[6]{x+4}$$
;

r)
$$f(x) = \frac{\sqrt[5]{x-4}}{\sqrt[4]{x^2-49}}$$
;

д)
$$f(x) = \sqrt[6]{x^2(x-1)(x+2)}$$
;

e)
$$f(x) = \sqrt[4]{x^4 - 25x^2} - \sqrt{5x - x^2}$$
.

Укажите наименьшее целое значение аргумента из области определения этой функции, если оно существует.

2.201. Найдите множество значений функции:

a)
$$y = \sqrt[4]{x} + 5$$
;

б)
$$y = -\sqrt[8]{x} - 4$$
;

B)
$$y = \sqrt[5]{x} - 6$$
;

a)
$$y = \sqrt[4]{x} + 5$$
; 6) $y = -\sqrt[8]{x} - 4$; B) $y = \sqrt[5]{x} - 6$; $y = -4\sqrt[6]{x} + 5$.

2.202. Найдите наименьшее значение функции:

a)
$$f(x) = \sqrt[6]{x} - 4$$
;

a)
$$f(x) = \sqrt[6]{x} - 4$$
; 6) $f(x) = \sqrt[4]{x - 7} + 12$;

r)
$$f(x) = 3\sqrt[8]{x} + 5$$

2.203. Найдите нули функции:

a)
$$f(x) = \sqrt[4]{3x-4}$$
;

6)
$$f(x) = \sqrt[7]{8 - 5x}$$
;

$$f(x) = \sqrt[5]{36 - x^2}.$$

2.204. Верно ли, что:

а) функция $f(x) = \sqrt[6]{x}$ на промежутке [7; + ∞) принимает положительные значения;

- б) функция $f(x) = \sqrt[3]{x}$ на промежутке [-11; -1] принимает отрицательные значения;
- в) функция $f(x) = \sqrt[10]{x}$ на промежутке [0; 7] принимает только положительные значения:
- г) функция $f(x) = \sqrt[7]{x}$ принимает отрицательные значения при любых x < 0?
 - **2.205.** Дана функция $f(x) = \sqrt[n]{x}$. Сравните:

 - a) f(6) и f(11); б) f(29,18) и f(31,9).
- **2.206.** Используйте свойство монотонности функции $f(x) = \sqrt[n]{x}$ и сравните числа:

 - a) $\sqrt[3]{2.3}$ $\mu \sqrt[3]{2.9}$: 6) $\sqrt[7]{-17}$ $\mu \sqrt[7]{-13}$: B) $3 \mu \sqrt[4]{79}$:

- г) $\sqrt[3]{5}$ и $\sqrt[6]{28}$; п) $\sqrt[15]{65}$ и $\sqrt[5]{4}$; e) $2\sqrt[3]{3}$ и $3\sqrt[3]{2}$.
- 2.207. Найдите два последовательных целых числа, между которыми на координатной прямой находится число:
- a) $\sqrt{2}$; 6) $\sqrt[3]{7}$; B) $\sqrt[4]{19}$;

- r) $\sqrt[3]{29}$: π) $-\sqrt[4]{83}$: e) $-\sqrt[3]{123}$.
- 2.208. Найдите все целые числа, расположенные на координатной прямой между числами:
 - a) 2 и $\sqrt[3]{129}$;
- б) $\sqrt[5]{-37}$ и $\sqrt[6]{71}$.
- 2.209. Сравните числа:

- а) $\sqrt[3]{5}$ и $\sqrt{3}$; б) $\sqrt[9]{11}$ и $\sqrt[6]{5}$; в) $\sqrt[4]{3}$ и $\sqrt[6]{2\sqrt{7}}$; г) $\sqrt{3}$ и $\sqrt[3]{\sqrt{26}}$.
- 2.210. Расположите в порядке возрастания числа:
- a) $\sqrt[3]{3}$, $\sqrt{2}$ и $\sqrt[6]{5}$; 6) $\sqrt[3]{5}$, $\sqrt[12]{3}$ и $\sqrt[4]{8}$;
- в) $\sqrt[5]{3}$, $\sqrt[3]{2}$ и $\sqrt[5]{\sqrt[3]{30}}$; г) $\sqrt[15]{125}$, $\sqrt[5]{6}$ и $\sqrt[6]{4\sqrt[5]{4}}$.
- 2.211. Определите, какие из данных функций являются четными, а какие нечетными:

- a) $f(x) = \sqrt[4]{x}$; 6) $f(x) = \sqrt[15]{x}$; B) $f(x) = \sqrt[8]{|x| 1}$; $f(x) = \sqrt[9]{|x| + 2}$.

Каким свойством обладает график нечетной функции?

2.212. Постройте график функции:

a)
$$g(x) = \sqrt[4]{x}$$
;

6)
$$g(x) = -\sqrt[4]{x}$$
;

B)
$$g(x) = \sqrt[4]{x+2}$$
;

r)
$$g(x) = \sqrt[4]{x} + 2$$
;

г)
$$g(x) = \sqrt[4]{x} + 2;$$
 д) $g(x) = \sqrt[4]{x-1} - 3;$ е)* $g(x) = \sqrt[4]{|x|}.$

e)*
$$g(x) = \sqrt[4]{|x|}$$

2.213. Постройте график функции:

a)
$$f(x) = \sqrt[3]{x}$$
;

B)
$$f(x) = \sqrt[3]{x-3}$$
;

$$f(x) = \sqrt[3]{x} - 3;$$

r)
$$f(x) = \sqrt[3]{x} - 3;$$
 g) $f(x) = \sqrt[3]{x+2} + 1;$ e)* $f(x) = \sqrt[3]{|x|}.$

e)*
$$f(x) = \sqrt[3]{|x|}$$
.

2.214. Выберите прямые, которые пересекает график функции $h(x) = \sqrt[6]{x}$:

a)
$$y = 3x$$
;

6)
$$y = -x + 2$$
;

B)
$$y = 2x + 5$$

6)
$$y = -x + 2$$
; B) $y = 2x + 5$; $y = -4x - 3$.

2.215. В одной системе координат постройте графики функций и найдите координаты их общих точек:

a)
$$y = \sqrt[4]{x}$$
 и $y = \frac{32}{x}$;

a)
$$y = \sqrt[4]{x}$$
 и $y = \frac{32}{x}$; 6) $y = \sqrt[3]{x}$ и $y = \frac{x}{4}$.

2.216*. Даны функции $f(x) = \sqrt[3]{x}$ и $g(x) = \sqrt{x}$. Найдите значение выражения:

a)
$$f(g(64));$$

6)
$$g(f(0,000001))$$
.

2.217. Найдите значение функции $h(x) = \sqrt[6]{x}$ при значении аргумента, равном: 0; 1; 27; $\frac{1}{64}$; 0,000001.

2.218. Для функции $g(x) = \sqrt[5]{x} + 2$ найдите: g(1); g(-1); g(0,00243); $g\left(\frac{1}{22}\right); g\left(-25\sqrt{5}\right).$

2.219. Для функции $f(x) = \sqrt[3]{x}$ найдите значение аргумента, при котоpom: f(x) = 1; f(x) = -2; $f(x) = \frac{1}{2}$; $f(x) = -\sqrt[3]{11}$.

2.220. Выберите точки, принадлежащие графику функции $y = \sqrt[4]{x}$:

- a) A(0; 0);
- б) B(16; -2);
- в) *C*(-10 000; 10);
- г) D(0.0625; 0.5).

2.221. Найдите область определения функции:

a)
$$f(x) = \sqrt[6]{8 - 3x}$$
;

6)
$$f(x) = \frac{2}{\sqrt[7]{2x+3}};$$

B)
$$f(x) = \frac{10}{\sqrt[4]{3x^2 + 10x + 3}};$$
 r) $f(x) = \sqrt[8]{\frac{x+3}{x-6}}.$

$$f(x) = \sqrt[8]{\frac{x+3}{x-6}}.$$

2.222. Найдите область определения функции:

a)
$$f(x) = \frac{\sqrt[6]{x+8}}{\sqrt[6]{3-x}};$$

B)
$$f(x) = \sqrt[8]{x^2 - 4x + 3} + \sqrt[4]{9 - x^2}$$
.

2.223. Найдите множество значений функции:

a)
$$y = \sqrt[6]{x} + 7$$
; 6) $y = -\sqrt[4]{x} + 3$;

6)
$$y = -\sqrt[4]{x} + 3$$

B)
$$y = \sqrt[3]{x} + 2$$

B)
$$y = \sqrt[3]{x} + 2$$
; $r) y = 3\sqrt[8]{x} - 6$.

Существует ли наименьшее значение этой функции?

2.224. Найдите наименьшее значение функции:

a)
$$f(x) = \sqrt[8]{x} + 2$$
;

6)
$$f(x) = \sqrt[6]{x+7} - 10$$
;

B)
$$f(x) = \sqrt[8]{x-1} - 63$$
; r) $f(x) = 4\sqrt[10]{x} - 7$.

r)
$$f(x) = 4\sqrt[10]{x} - 7$$
.

2.225. Найдите нули функции:

a)
$$f(x) = \sqrt[6]{2 - 7x}$$
;

a)
$$f(x) = \sqrt[6]{2 - 7x}$$
; 6) $f(x) = \sqrt[3]{7x + 1}$;

B)
$$f(x) = \sqrt[4]{2x^2 - 5x + 2}$$
; $f(x) = \sqrt[7]{3x^2 + x}$.

$$f(x) = \sqrt[7]{3x^2 + x}$$

2.226. Верно ли, что: а) функция $f(x) = \sqrt[8]{x}$ на промежутке [-3; 0] принимает положительные значения; б) функция $f(x) = \sqrt[5]{x}$ принимает положительные значения при любых x > 0?

2.227. Пользуясь свойством монотонности функции $f(x) = \sqrt[n]{x}$, сравните числа:

a)
$$\sqrt[5]{1,8}$$
 и $\sqrt[5]{1,6}$;

а)
$$\sqrt[5]{1,8}$$
 и $\sqrt[5]{1,6}$; б) $\sqrt[3]{-19}$ и $\sqrt[3]{-23}$; в) 2 и $\sqrt[3]{7}$;

в) 2 и
$$\sqrt[3]{7}$$
:

г)
$$\sqrt[4]{15}$$
 и 2;

д)
$$\sqrt[3]{28}$$
 и 3

г)
$$\sqrt[4]{15}$$
 и 2; д) $\sqrt[3]{28}$ и 3; e) $\sqrt[15]{31}$ и $\sqrt[3]{2}$.

2.228. Найдите два последовательных целых числа, между которыми на координатной прямой находится число:

a)
$$\sqrt{5}$$
;

б)
$$\sqrt[3]{23}$$
;

B)
$$\sqrt[4]{629}$$
;

r)
$$-\sqrt[5]{41}$$
.

2.229. Найдите все целые числа, расположенные на координатной прямой между числами:

a)
$$-3$$
 и $\sqrt[4]{89}$:

б)
$$\sqrt[7]{-131}$$
 и $\sqrt[4]{79}$.

2.230. Сравните числа:

a)
$$\sqrt{2}$$
 и $\sqrt[3]{3}$;

б)
$$\sqrt[12]{12}$$
 и $\sqrt[8]{5}$;

в)
$$\sqrt{3}$$
 и $\sqrt[5]{\sqrt{247}}$; г) $\sqrt[10]{7}$ и $\sqrt[5]{2\sqrt{2}}$.

г)
$$\sqrt[10]{7}$$
 и $\sqrt[5]{2\sqrt{2}}$

2.231. Расположите в порядке убывания числа:

a)
$$\sqrt{2}$$
, $\sqrt[3]{3}$ и $\sqrt[6]{6}$;

a)
$$\sqrt{2}$$
, $\sqrt[3]{3}$ и $\sqrt[6]{6}$; б) $\sqrt[3]{6}$, $\sqrt[4]{10}$ и $\sqrt[3]{\sqrt{30}}$.

2.232. Определите, какие из данных функций являются четными, а какие нечетными:

a)
$$f(x) = \sqrt[8]{x}$$
;

6)
$$f(x) = \sqrt[3]{x}$$
;

$$f(x) = \sqrt[7]{|x| + 13}$$
.

Каким свойством обладает график четной функции?

2.233. Постройте график функции:

a)
$$g(x) = \sqrt[4]{x-3}$$
:

$$6) g(x) = \sqrt[4]{x} -$$

a)
$$g(x) = \sqrt[4]{x-3}$$
; 6) $g(x) = \sqrt[4]{x} - 1$; B) $g(x) = \sqrt[4]{x+2} + 4$.

2.234. Постройте график функции:

a)
$$f(x) = \sqrt[3]{x-2}$$
;

$$5) f(x) = \sqrt[3]{x} + 2$$

a)
$$f(x) = \sqrt[3]{x-2}$$
; 6) $f(x) = \sqrt[3]{x} + 2$; B) $f(x) = \sqrt[3]{x+1} - 3$.

2.235. Определите, пересекаются ли график функции $y = \sqrt[8]{x}$ и прямая:

a)
$$y = 1$$
;

б)
$$y = \frac{1}{2}$$
;

B)
$$y = -7$$

б)
$$y = \frac{1}{3}$$
; в) $y = -7$; г) $y = \sqrt[8]{13}$.

Если да, то найдите координаты точки пересечения.

2.236. В одной системе координат постройте графики функций $y = \sqrt[3]{x}$ и y = x, найдите координаты их общих точек.

2.237. Найдите значение выражения $6^{-1} \cdot \left(\frac{1}{6}\right)^{-2} - 5^{-1} \cdot 25$.

2.238. Из данных уравнений выберите все уравнения, равносильные уравнению $\frac{x-2}{r^2-4} = 0$:

a)
$$5x - 10 = 0$$
;

$$6) x^2 - x + 7 = 0;$$

B)
$$3(x-1)+6=7x-4(x+2);$$
 r) $\frac{x}{x+1}=0;$

r)
$$\frac{x}{x+1} = 0;$$

д)
$$x^2 + 9 = 0$$
.

2.239. При a = -3 не имеет смысла выражение:

a)
$$\sqrt{a+3}$$
;

6)
$$\sqrt{3-a}$$

B)
$$\sqrt{a-3}$$
;

a)
$$\sqrt{a+3}$$
; 6) $\sqrt{3-a}$; B) $\sqrt{a-3}$; r) $\sqrt{-a-3}$.

Выберите правильный ответ.

2.240. Найдите наименьший положительный и наибольший отрицательный корни уравнения:

a)
$$\sin\left(\frac{\pi}{3} - 3x\right) = -1$$

a)
$$\sin\left(\frac{\pi}{3} - 3x\right) = -1;$$
 6) $\cos\left(\frac{3\pi}{4} - \frac{x}{2}\right) = -1.$