

Рис. 177. Фотоэлемент: a — вакуумный (газонаполненный); δ — полупроводниковый

преобразующих световые сигналы в электрические. Такие устройства называются фотоэлементами (рис. 177).

Фотоэлементы используются для контроля пассажиропотока в метро, для включения и выключения освещения на улицах, для управления производственными процессами, в военной технике:

в самонаводящихся снарядах, для сигнализации и локации. Инфракрасные фотоэлементы широко используются в пультах дистанционного управления различными бытовыми электронными приборами (телевизор, кондиционер и т. д.).

▶ В 1921 г. при присуждении Альберту Эйнштейну Нобелевской премии по физике в решении Нобелевского комитета указывалось, что «премией осо-

бенно отмечается объяснение законов фотоэлектрического эффекта». Первый фотоэлемент на внешнем фотоэффекте был создан Столетовым в $1888\ r.$

- 1. В чем сущность гипотезы Эйнштейна?
- 2. Что называется фотоном? Перечислите основные свойства фотона.
- 3. По какой формуле можно определить энергию фотона?
- 4. Запишите уравнение Эйнштейна для фотоэффекта и назовите все физические величины, входящие в него.
- 5. Покажите, что уравнение Эйнштейна для фотоэффекта является следствием закона сохранения и превращения энергии.
- 6. Перечислите условия, необходимые для возникновения фотоэффекта.
- 7. Что такое задерживающее напряжение?
- 8. Что называется красной границей фотоэффекта? От чего она зависит?
- 9. Как квантовая теория объясняет существование граничной частоты фотоэффекта? Запишите формулу для красной границы фотоэффекта.
- 10. Объясните законы фотоэффекта исходя из квантовой теории света.
- 11. Почему энергия фотоэлектронов для данного вещества определяется только частотой падающего света?

Примеры решения задач

1. Монохроматический свет длиной волны $\lambda = 450$ нм падает на поверхность натрия. Определите: а) энергию E фотона этого света; б) мо-

дуль импульса p фотона падающего света; в) красную границу ν_{\min} фотоэффекта для натрия; г) максимальную кинетическую энергию E_{κ}^{\max} фотоэлектронов.

$$egin{aligned} &\upmath{\Pi}\ {
m a\,H\,o}\ : \\ &\upmath{\lambda} = 450\ {
m hm} = 4,50\cdot 10^{-7}\ {
m M} \\ &A_{_{\rm BMX}} = 3,7\cdot 10^{-19}\ {
m Дж} \\ &h = 6,63\cdot 10^{-34}\ {
m Дж\cdot c} \\ &c = 3,0\cdot 10^8\ {
m \frac{M}{c}} \\ \hline &E = ?\ p = ?\ {
m v_{min}} = ? \end{aligned}$$

Решение

а) Энергия фотона:

$$E=h
u=rac{hc}{\lambda},$$
 $E=rac{6.63\cdot 10^{-34}\
m Дж\cdot c\cdot 3.0\cdot 10^8\ rac{M}{c}}{4.50\cdot 10^{-7}\
m M}=$ $=4.4\cdot 10^{-19}\
m Дж=2.8\
m ert B.$

б) Модуль импульса фотона:

$$p = \frac{h}{\lambda},$$

$$p = \frac{6.63 \cdot 10^{-34} \text{ Дж} \cdot \text{c}}{4.50 \cdot 10^{-7} \text{ M}} = 1.50 \cdot 10^{-27} \frac{\text{KF} \cdot \text{M}}{\text{c}}.$$

в) Красная граница связана с работой выхода соотношением:

$$u_{\min} = \frac{A_{\text{вых}}}{h}, \quad \nu_{\min} = \frac{3.7 \cdot 10^{-19} \text{ Дж}}{6.63 \cdot 10^{-34} \text{ Дж } \cdot \text{c}} = 5.6 \cdot 10^{14} \text{ Гц.}$$

г) Из уравнения Эйнштейна для внешнего фотоэффекта находим, что максимальная кинетическая энергия вылетевшего электрона:

$$E_{\kappa}^{\text{max}} = hv - A_{\text{BMX}}, \quad E_{\kappa}^{\text{max}} = 2.8 \text{ } 9\text{B} - 2.3 \text{ } 9\text{B} = 0.50 \text{ } 9\text{B}.$$

Ответ: а)
$$E=2.8$$
 эВ; б) $p=1.50\cdot 10^{-27}\,\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}};$ в) $\nu_{\mathrm{min}}=5.6\cdot 10^{14}$ Гц; г) $E_{\mathrm{K}}^{\mathrm{max}}=0.50$ эВ.

2. Под действием света длиной волны $\lambda=400$ нм с поверхности металла вылетают электроны, при этом их энергия равна половине энергии фотонов, вызывающих фотоэффект. Определите длину волны λ_{κ} , соответствующую красной границе фотоэффекта.

$$egin{aligned} \Pi_{\text{a H o:}} & \Pi_{\text{a = 4,00 \cdot 10}^{-7} \text{ M}} \\ & h = 6,63 \cdot 10^{-34} \ \text{Дж \cdot c} \\ & \lambda_{\text{\tiny K}} & - ? \end{aligned}$$

Решение

Запишем уравнение Эйнштейна для фотоэффекта:

$$h_{\rm V}=A_{\rm \tiny BMX}+\frac{mv^2}{2}.$$

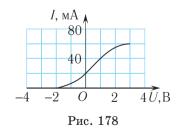
Красную границу фотоэффекта определим из соотношения:

$$A_{\text{\tiny BMX}} = h v_{\text{min}}$$
.

По условию задачи:

$$\frac{mv^2}{2} = \frac{hv}{2}$$
.

Тогда $hv = hv_{\min} + \frac{hv}{2}$, откуда следует, что $v_{\min} = \frac{v}{2}$.


Так как длина волны $\lambda = \frac{c}{v}$, то

$$\lambda_{_{\rm K}}=2\lambda,~\lambda_{_{\rm K}}=2\cdot 400~{\rm HM}=800~{\rm Hm}.$$

Ответ: $\lambda_{\kappa} = 800$ нм.

Упражнение 19

- 1. Определите энергию E фотона для излучения частотой $v = 5, 4 \cdot 10^{14} \, \Gamma \mu$.
- 2. Вычислите энергию E_1 фотона видимого света длиной волны $\lambda_1=0,60$ мкм и сравните ее с энергиями фотонов ультрафиолетового излучения длиной волны $\lambda_2=0,252$ мкм, рентгеновского излучения $\lambda_3=0,10$ нкм и γ -излучения $\lambda_4=0,10$ пм.
- 3. Определите красную границу v_{\min} фотоэффекта для некоторого металла, если работа выхода электрона из него $A_{\text{вых}} = 3.3 \cdot 10^{-19}$ Дж.
- 4. Определите длину волны λ ультрафиолетового излучения, падающего на поверхность цинка, при которой модуль максимальной скорости вылетающих фотоэлектронов составляет $v_{\rm max} = 800 \, \frac{\rm km}{c}$.
- 5. Определите работу выхода $A_{\text{вых}}$ электрона из катода, используя вольтамперную характеристику вакуумного фотоэлемента (рис. 178). Катод освещается светом с длиной волны $\lambda = 200$ нм. Найдите число N электронов, выбиваемых из фотокатода в единицу времени.
- 6. Определите количество N фотонов с частотой $\nu = 9.5 \cdot 10^{12} \; \Gamma$ ц, которое содержится в импульсе излучения с энергией $E = 8.8 \cdot 10^{-18} \; \text{Дж}.$

7. Определите максимальную кинетическую энергию E_{κ}^{\max} и модуль максимальной скорости v_{\max} фотоэлектрона, вылетевшего из натрия

при облучении его ультрафиолетовым излучением длиной волны $\lambda = 200\,\mathrm{hm}$.

8. На металлическую пластину падает монохроматический свет длиной волны $\lambda=413$ нм. Определите работу выхода $A_{\text{вых}}(\mathfrak{b}B)$, если задерживающее напряжение $U_{\mathfrak{a}}=1,0$ В.

§ 29. Давление света. Корпускулярно-волновой дуализм

Словечко громкое всегда Из затрудненья вас выводит!

И. Гёте. Фауст

После открытия фотона в научном мире с новой силой «вспыхнула» старая дискуссия: так что же такое свет — волна или поток частиц? Как «примирить» друг с другом эти противоречивые представления? Какие из этого следуют выводы?

Давлением называется скалярная физическая величина, численно равная отношению модуля силы, действующей по нормали к площадке, к ее площади $p=\frac{F}{S}$. В СИ единицей давления является паскаль (Па): 1 Па = $\frac{1}{1}\frac{H}{M^2}$.

Из законов механики следует, что тело при ударе о некоторую поверхность оказывает на нее механическое давление, обусловленное изменением импульса тела. Причем давление тела на поверхность оказывается в случае как упругого, так и не упругого удара. А будет ли возникать подобный эффект при отражении и поглощении света некоторой

поверхностью? Иными словами, оказывает ли свет давление на поверхность, с которой взаимодействует? После завершения построения Максвеллом волновой теории света ответы на эти вопросы стали очевидными. Свет как электромагнитная волна обладает энергией и импульсом, поэтому оказывает давление на поверхность, на которую он падает.

Русский физик Петр Николаевич Лебедев в 1899 г. впервые измерил световое давление. Он подвесил на тонкой нити коромысло с парой крылышек на концах (рис. 179): поверхность у одного из них была зачерненной,

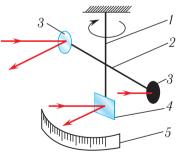


Рис. 179. Схема опыта Лебедева: 1 — подвес; 2 — коромысло; 3 — крылышки; 4 — зеркало; 5 — шкала