142 Химия растворов



#### Вопросы, задания, задачи

- 1. Почему соли проводят электрический ток после плавления?
- 2. Чем отличается электрический ток в металлах от электрического тока в растворах или расплавах электролитов?
- 3. Составьте уравнения диссоциации следующих веществ:  $KHCO_3$ ,  $HCIO_4$ ,  $Sr(OH)_2$ , LiOH,  $KHSO_4$ ,  $NH_4H_2PO_4$ ,  $HNO_2$ .
  - 4. Почему электролитическая диссоциация в растворах протекает самопроизвольно?
- 5. Сопоставьте окислительную и восстановительную способности: а) атома алюминия и иона  $Al^{3+}$ ; б) атома железа и иона  $Fe^{2+}$ ; в) атома серы и сульфид-иона; г) атома серы  $S^0$  и атома серы в составе кислотного остатка  $SO_4^{2-}$ .
- 6. Почему для анионов большинства многоосно́вных кислот, например  $H_2PO_4^-$ ,  $HS^-$ ,  $HCO_3^-$ ,  $HSO_3^-$ , диссоциация по второй ступени протекает слабее, чем по первой? Как изменится степень диссоциации при добавлении ионов водорода в растворы этих кислот?
- 7. В водном растворе содержится фтороводород количеством 50 моль. Чему равно суммарное число ионов, образовавшихся при его диссоциации, если  $\alpha(HF) = 9$  %?
- 8. Определите суммарное количество катионов и анионов соли в растворе, содержащем сульфат натрия массой 2,84 г.
- 9. Чему равна молярная концентрация катионов  $H^+$  в водном растворе уксусной кислоты объёмом 4 дм<sup>3</sup>, если степень диссоциации кислоты равна 2,6 %, а масса кислоты 6 г?
- 10. В растворе объёмом 2,5 дм $^3$  масса  $Ba(OH)_2$  равна 14 г. Вычислите молярную концентрацию ионов  $OH^-$  в данном растворе.

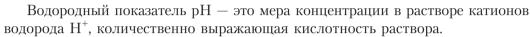
### § 26. Понятие о водородном показателе (pH) раствора

Вода является слабым электролитом и только в небольшой степени диссоциирует на ионы  $H^+$  и  $OH^-$ :

$$H_2O \rightleftharpoons H^+ + OH^-$$
.

При 25 °C степень диссоциации  $\alpha$  воды равна примерно  $2 \cdot 10^{-9}$ . Это означает, что из миллиарда молекул воды только две молекулы находятся в виде ионов  $H^+$  и  $OH^-$ .

Концентрация ионов водорода  $c(H^+)$  равна  $10^{-7}$  моль/дм<sup>3</sup>. Такова же концентрация гидроксильных групп  $c(OH^-)$ .


Произведение концентраций ионов  $H^+$  и  $OH^-$  в воде и водных растворах является величиной постоянной при определённой температуре. Так, при 25 °C:

$$c(H^+) \cdot c(OH^-) = 10^{-14} \text{ (моль/дм}^3)^2.$$

Растворы, в которых концентрация катионов водорода равна концентрации гидроксид-анионов, называют нейтральными. Если концентрация катионов водорода в растворе больше концентрации гидроксид-анионов, то есть  $c(H^+) > c(OH^-)$ , то среда раствора кислая. Если же в растворе преобладают гидроксиданионы, то есть  $c(OH^-) > c(H^+)$ , то среда раствора щелочная.

Количественно кислотность и связанную с ней основность (щёлочность) среды растворов выражают с помощью водородного показателя **рН** (читается «пэ-аш»). Водородный показатель представляет собой десятичный логарифм концентрации ионов водорода в растворе, взятый со знаком «минус»:

$$pH = -\lg c(H^+).$$



Водородный показатель является безразмерной величиной.

Например, при молярной концентрации катионов  $H^+$   $c(H^+) = 10^{-5}$  моль/дм<sup>3</sup> рH равен 5, а при  $c(H^+) = 10^{-3}$  моль/дм<sup>3</sup> рH равен 3.

**Пример 1.** Определите pH раствора серной кислоты, молярная концентрация которой равна  $0{,}005$  моль/дм $^3$ .

Определим количество ионов водорода по уравнению диссоциации кислоты:

$$^{0.005~\text{моль}}_{\text{1 моль}} \to ^{x~\text{моль}}_{\text{2 моль}} + \text{SO}_4^{2-}$$
, откуда  $x=0.01~\text{моль}$ , то есть  $n(\text{H}^+)=0.01~\text{моль}$ .

Молярная концентрация ионов водорода равна:

$$c = \frac{n}{V}$$
;  $c(H^+) = \frac{0.01 \text{ моль}}{1 \text{ дм}^3} = 0.01 \text{ моль/дм}^3 = 10^{-2} \text{ моль/дм}^3$ .

Рассчитаем водородный показатель:  $pH = -lgc(H^+) = -lg10^{-2} = 2$ . *Ответ*: pH = 2.

Рассчитаем водородный показатель в щелочном растворе.

**Пример 2.** Определите pH раствора NaOH с молярной концентрацией  $0.01~{\rm моль/дm^3}.$ 



144 Химия растворов

$$c(\mathrm{H}^+) \cdot c(\mathrm{OH}^-) = c(\mathrm{H}^+) \cdot 10^{-2} \ \mathrm{моль/дм}^3 = 10^{-14} \ (\mathrm{моль/дм}^3)^2, \ \mathrm{откуда}$$
 
$$c(\mathrm{H}^+) = \frac{10^{-14} (\mathrm{моль/дм}^3)^2}{10^{-2} \mathrm{моль/дм}^3} = 10^{-12} \ \mathrm{моль/дм}^3,$$
 следовательно, pH =  $-\mathrm{lg}c(\mathrm{H}^+) = -\mathrm{lg}10^{-12} = 12$  (щелочная среда).   
 *Ответ:* pH = 12.

Обратите внимание на то, что и в щелочной среде катионы  $H^+$  продолжают присутствовать в водном растворе.

Поскольку в воде при 20-25 °C концентрации ионов  $H^+$  и  $OH^-$  одинаковы и равны  $10^{-7}$  моль/дм³, то для чистой воды  $pH = -lgc(H^+) = -lg10^{-7} = 7$ . Такое значение pH соответствует *нейтральной среде*. Значению pH < 7 соответствует большая кислотность раствора, а pH > 7 соответствует большая щёлочность раствора (рис. 59).



Рис. 59. Шкала значений рН среды в водном растворе



Итак, значение pH можно рассчитать, а также оценить с помощью отдельных индикаторов (лакмуса, фенолфталеина, метилоранжа), универсального индикатора со шкалой pH и приборов — pH-метров (рис. 59, 60).



Рис. 60. рН-метры

Измерение рН необходимо в медицине, сельском хозяйстве, науке, на производстве. В организме здорового человека рН крови составляет 7,4, желудочного сока -1,7, слюны -6,9, слёз -7,3-7,5. При консервировании добавление уксусной кислоты в маринад до рН <4,5 подавляет деятельность большинства бактерий. С аналогичной целью в состав прохладительных напитков вводят лимонную кислоту для понижения значения рН до 3. Для нормального развития растений чаще всего необходимо уменьшать повышенную кислотность почв известкованием с помощью мела  $CaCO_3$ , доломитовой муки  $CaMg(CO_3)_2$  или некоторых удобрений до рН = 6,0-6,5 (табл. 16).

Таблица 16. Классификация диапазонов рН почвы

| Кислотность почвы                   | Диапазон рН    |
|-------------------------------------|----------------|
| Кислая                              | 3,5-6,0        |
| Нейтральная и близкая к нейтральной | 6,1-7,8        |
| Щелочная                            | 7,9–9,0 и выше |



**Водородный показатель рН** — это мера концентрации катионов водорода  $H^+$  в растворе. Рассчитывают водородный показатель по формуле  $pH = -lgc(H^+)$ .

#### Вопросы, задания, задачи



- 1. Укажите кислотность среды (кислая, нейтральная, щелочная), а также соответствующую окраску универсального индикатора:
  - a) pH = 14; 6) pH = 4; B) pH = 6; r) pH = 9.
- 2. Больше или меньше семи будет pH раствора после сливания равных объёмов растворов гидроксида калия и серной кислоты, имеющих молярную концентрацию 0,1 моль/дм<sup>3</sup>?
- 3. Составьте уравнения диссоциации веществ, в растворах которых лакмус приобретает красную окраску: LiOH, HCOOH, HNO $_3$ , Ca(OH) $_2$ , HCl, H $_2$ SO $_4$ .
- 4. Даны растворы соединений: NaOH, HCl, NaCl, KOH, HNO<sub>3</sub>, Ca(OH)<sub>2</sub>, NH<sub>3</sub>, CO<sub>2</sub>, SO<sub>2</sub>, CH<sub>3</sub>COOH, HNO<sub>2</sub>, HF. При условии одинаковой молярной концентрации какие из растворов имеют нейтральную среду, pH > 7, pH < 7?
- 5. Рассчитайте значение pH в растворе: а) бромоводородной кислоты с молярной концентрацией 0,0001 моль/дм<sup>3</sup>; б) серной кислоты с молярной концентрацией 0,05 моль/дм<sup>3</sup>.

146 Химия растворов

- 6. Определите pH раствора КОН с молярной концентрацией 0,001 моль/дм<sup>3</sup>.
- 7. Исходя из значения произведения  $c(H^+) \cdot c(OH^-) = 10^{-14} \, (моль/дм^3)^2$  при 25 °C, найдите значение молярной концентрации  $c(OH^-)$  при pH 2, 5, 8, 12 и 14. Как приготовить растворы c pH = 2 и pH = 14?
- 8. Чему равна молярная концентрация (моль/дм $^3$ ) ионов водорода в растворе с pH = 4?
- 9. Какая среда будет в растворе, полученном при смешивании равных объёмов растворов, содержащих 3 моль гидроксида натрия и 2 моль серной кислоты?
- 10. В растворе азотистой кислоты число непродиссоциировавших молекул в 2,5 раза больше числа продиссоциировавших. Укажите степень диссоциации  $\alpha$  (в процентах) и pH раствора, если исходная концентрация кислоты в нём была равна 0,0035 моль/дм<sup>3</sup>.

## Лабораторный опыт 3. Определение кислотного или основного характера раствора с помощью индикаторов

Peaкmuвы: универсальный индикатор, дистиллированная вода, растворы  $HCl, H_2SO_4, Ca(OH)_2, NaOH.$ 

Определите рН выданных растворов кислот, щелочей и дистиллированной воды. Для этого нанесите стеклянными палочками по капле каждого из исследуемых растворов на полоску универсального индикатора. Окраску сравните со специальной шкалой рН.

Сделайте вывод о кислотно-основном характере каждого из растворов.

# § 27. Химические свойства кислот, оснований, солей в свете теории электролитической диссоциации

Теория электролитической диссоциации даёт единый подход к пониманию процессов, протекающих в растворах с участием электролитов — кислот, оснований, солей. Этот подход основан на том факте, что после растворения электролитов в воде получается раствор, содержащий катионы и анионы. Именно они принимают участие в химических реакциях.

**Химические реакции в растворах электролитов** — это реакции с участием ионов, образующихся в результате диссоциации электролитов.

Реакции между ионами в растворах без изменения степеней окисления атомов называют *реакциями ионного обмена*.