212 Неметаллы

Вопросы, задания, задачи

- 1. Выпишите из текста параграфа восемь формул нитратов.
- 2. Перечислите важнейшие физические свойства азотной кислоты.
- 3. Укажите окраску раствора азотной кислоты при добавлении: а) лакмуса; б) метилоранжа.
 - 4. Составьте формулы нитратов магния, лития, железа(III), бария.
- 5. Проанализируйте возможность протекания реакций в растворе между азотной кислотой и солями: хлорид калия, карбонат калия, сульфид натрия, сульфат натрия.
- 6. Составьте уравнения реакций в молекулярной и ионной формах между азотной кислотой и веществами, формулы которых: Fe₂O₃, Ca(OH)₂, MgCO₃.
- 7. Рассчитайте массу соли, которую можно получить в результате взаимодействия меди и раствора массой 50 г с массовой долей азотной кислоты 60 % (кислота концентрированная).
- 8. Методом электронного баланса расставьте коэффициенты в уравнениях реакций с участием азотной кислоты:

```
S + HNO_{3(KOHU)} = H_2SO_4 + NO_2\uparrow + H_2O;
```

 $Mg + HNO_{3(KOHL)} = Mg(NO_3)_2 + N_2 + H_2O.$

9. Запишите уравнения реакций согласно схеме:

a) $NO_2 \xrightarrow{1} HNO_3 \xrightarrow{2} NH_4NO_3 \xrightarrow{KOH} X \xrightarrow{O_2/Pt} ...;$ 6) $Cu \xrightarrow{1} NO_2 \xrightarrow{2} HNO_3 \xrightarrow{CaCO_3} X \xrightarrow{KOH} ...$

10. Какой минимальный объём раствора азотной кислоты с массовой долей 80 % и плотностью 1,45 г/см³ необходим для растворения серебра массой 4,32 г? Реакция протекает по схеме: Ag + HNO₃ → AgNO₃ + NO₂↑ + H₂O.

§ 39. Кислородсодержащие соединения фосфора

К наиболее значимым кислородсодержащим соединениям фосфора относят оксид фосфора(V), фосфорную кислоту и её соли.

Оксиды фосфора

Взаимодействие кислорода с фосфором приводит к образованию оксидов, состав которых зависит от условий проведения реакции.

При сжигании фосфора в чистом кислороде, как указано на с. 201, получается оксид фосфора(V) P_2O_5 , а при недостатке кислорода — оксид фосфора(III) P_2O_3 .

Белый фосфор являлся одним из первых дымообразующих веществ, при сжигании которого во время военных действий образовывалась дымовая завеса из частиц P_2O_5 . Дым — дисперсная система, состоящая из твёрдых взвешенных частиц в газовой среде.

Оксид фосфора(V) считают самым эффективным осушителем. Причём осушителем является и образующаяся при этом кислота. Обращаться с P_2O_5 следует крайне осторожно, так как при попадании на кожу оксид вызывает сильнейшие ожоги, одна из причин — обезвоживание тканей.

Оксид фосфора(V) $\overset{+5}{P_2}O_5$ — высший оксид фосфора, и ему соответствует гидроксид $\overset{+5}{H_3}PO_4$ — фосфорная (или *орто*фосфорная) кислота.

- P_2O_5 белое твёрдое вещество ($T_{\text{пл.}}$ = 420 °C). Является типичным кислотным оксидом: реагирует с водой (1), основными оксидами (2) и щелочами (3), широко используется в органическом синтезе. Рассмотрим особенности этих реакций:
- 1. Конечным продуктом реакции оксида фосфора(V) с водой является фосфорная кислота H_3PO_4 :

$$3H_2O + P_2O_5 = 2H_3PO_4.$$

Оксид фосфора(V) не только растворяется в воде, но и «жадно» поглощает пары воды из воздуха, то есть гигроскопичен, используется в качестве осущителя.

2. Взаимодействие с основными и амфотерными оксидами приводит к образованию солей:

$$3\text{CaO} + \text{P}_2\text{O}_5 = \text{Ca}_3(\text{PO}_4)_2;$$

 $3\text{ZnO} + \text{P}_2\text{O}_5 = \text{Zn}_3(\text{PO}_4)_2.$

3. При растворении P_2O_5 в щелочах могут образовываться как средние, так и кислые соли (в зависимости от соотношения реагентов). Например, при взаимодействии с гидроксидом натрия могут образоваться Na_3PO_4 , Na_2HPO_4 или NaH_2PO_4 :

$$P_2O_5 + 6NaOH = 2Na_3PO_4 + 3H_2O;$$

 $P_2O_5 + 4NaOH = 2Na_2HPO_4 + H_2O;$
 $P_2O_5 + 2NaOH + H_2O = 2NaH_2PO_4.$

Фосфорная кислота

Химические и физические свойства. Фосфор образует несколько кислот, однако самой устойчивой является фосфорная кислота H_3PO_4 (рис. 96). Из структурной формулы её молекулы видно, что кислота трёхосновна. H_3PO_4 — вещество, температура плавления которого 42,35 °C. Это означает, что при комнатной температуре фосфорная кислота — твёрдое вещество. Фосфорная кислота хорошо растворима в воде. В водном растворе диссоциирует ступенчато:

$$H_3PO_4 \rightleftharpoons H^+ + H_2PO_4^-;$$

 $H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-};$
 $HPO_4^{2-} \rightleftharpoons H^+ + PO_4^{3-}.$

Фосфорная кислота — слабый электролит, диссоциирует преимущественно по первой ступени. В растворах она проявляет *общие* свойства кислот: меняет цвет индикаторов

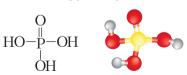


Рис. 96. Структурная формула и шаростержневая модель молекулы фосфорной кислоты

214 Неметаллы

и образует соли в реакциях с металлами, находящимися в ряду активности до водорода (1), основными и амфотерными оксидами (2), гидроксидами металлов и аммиаком (3), другими солями (4); она не является окислителем за счёт аниона:

1	$3Mg + 2H_3PO_4 = Mg_3(PO_4)_2 \downarrow + 3H_2 \uparrow$
2	$3CaO + 2H_3PO_4 = Ca_3(PO_4)_2\downarrow + 3H_2O$ оксид основный $3ZnO + 2H_3PO_4 = Zn_3(PO_4)_2\downarrow + 3H_2O$ оксид амфотерный
3	3 NaOH + H_3 PO $_4$ = Na $_3$ PO $_4$ + 3 H $_2$ O; основание (щёлочь) 2 NH $_3$ + H_3 PO $_4$ = (NH $_4$) $_2$ HPO $_4$ аммиак
4	$3K_2CO_3 + 2H_3PO_4 = 2K_3PO_4 + 3H_2O + 3CO_2\uparrow$

Отметим, что фосфорная кислота образует как средние соли (фосфаты), так и кислые (гидрофосфаты и дигидрофосфаты), в зависимости от соотношения исходных веществ. Например:

$$3$$
КОН + H_3 PO $_4$ = K_3 PO $_4$ + 3 H $_2$ O (фосфат калия) (3 : 1); 2 КОН + H_3 PO $_4$ = K_2 HPO $_4$ + 2 H $_2$ O (гидрофосфат калия) (2 : 1); K OH + H_3 PO $_4$ = K H $_2$ PO $_4$ + H_2 O (дигидрофосфат калия) (1 : 1).

При составлении *уравнений реакций в ионной форме* фосфорную кислоту представляют в виде молекул как преобладающих частиц в её растворе. Например:

$$2\text{NaOH} + \text{H}_3\text{PO}_4 = \text{Na}_2\text{HPO}_4 + 2\text{H}_2\text{O};$$

 $2\text{Na}^+ + 2\text{OH}^- + \text{H}_3\text{PO}_4 = 2\text{Na}^+ + \text{HPO}_4^{2-} + 2\text{H}_2\text{O};$
 $2\text{OH}^- + \text{H}_3\text{PO}_4 = \text{HPO}_4^{2-} + 2\text{H}_2\text{O}.$

Применение и получение. Фосфорную кислоту применяют в производстве удобрений и кормовых средств, для формирования антикоррозионных покрытий на металлах, а также в пищевой промышленности для придания кисловатого вкуса безалкогольным напиткам, для осветления сахара.

Получают H_3PO_4 взаимодействием природных фосфатов с серной кислотой при 60–80 °C с последующим отфильтровыванием осадка $CaSO_4$. При этом фосфорная кислота образуется в виде сиропообразного раствора с массовой долей вещества 85 %. Второй способ — сжигание фосфора, полученного прокаливанием природного фосфата с песком и углём, и последующее растворение оксида в воде: $Ca_3(PO_4)_2 \rightarrow P \rightarrow P_2O_5 \rightarrow H_3PO_4$.

Соли фосфорной кислоты. Фосфаты, как правило, нерастворимы, за исключением солей натрия, калия и аммония. Кислые соли более растворимы, чем средние, а дигидрофосфаты имеют большую растворимость, чем гидрофосфаты. Например, фосфат $Ca_3(PO_4)_2$ нерастворим, гидрофосфат $CaHPO_4$ — мало растворим, а дигидрофосфат $Ca(H_2PO_4)_2$ — хорошо растворим в воде. Большинство фосфатов обладает высокой термической устойчивостью — не разрушаются при нагревании до температуры плавления. Характерной особенностью фосфатов (средних солей) является образование осадка жёлтого цвета при действии раствора нитрата серебра(I) (Приложение 3):

В отличие от светло-жёлтого осадка бромида серебра(I) и жёлтого осадка йодида серебра(I), фосфат серебра(I) растворяется при добавлении азотной кислоты.

Применение солей фосфорной кислоты. Многие средние и кислые соли фосфорной кислоты ($Ca_3(PO_4)_2$, $CaHPO_4 \cdot 2H_2O$, $Ca(H_2PO_4)_2$, $NH_4H_2PO_4$, ($NH_4)_2HPO_4$) используются в качестве удобрений. Фосфаты находят применение в производстве каучука, пластмасс, в металлургии. Фосфат натрия уменьшает жёсткость воды и улучшает моющее действие стиральных порошков. Тем не менее во многих государствах в настоящее время установлены ограничения по применению фосфатов в качестве стиральных моющих средств. Дело в том, что после стирки фосфаты попадают в сточные воды, а затем в водоёмы, способствуя бурному развитию планктона и водорослей — водоёмы «стареют». По некоторым данным, 1 г фосфата стимулирует рост 5–10 кг водорослей.

Оксид фосфора(V) — кислотный оксид.

Фосфорная кислота, в отличие от азотной, является при н. у. твёрдым веществом, относится к слабым кислотам и окислительные свойства проявляет только за счёт атомов водорода.

Соли фосфорной кислоты — фосфаты, гидрофосфаты и дигидрофосфаты — находят широкое применение в качестве удобрений.

Вопросы, задания, задачи

- 1. Назовите классы веществ, с которыми взаимодействует: а) оксид фосфора(V); б) фосфорная кислота.
- 2. Составьте формулы: а) дигидрофосфата калия; дигидрофосфата кальция; гидрофосфата магния; фосфата железа(III); б) дигидрофосфата магния; гидрофосфата железа(III);

216 Неметаллы

гидрофосфата цинка; фосфата натрия. Запишите уравнения их электролитической диссоциации, учитывая отщепление только ионов металла.

- 3. Запишите три уравнения последовательных реакций, происходящих при добавлении раствора: а) гидроксида калия к раствору фосфорной кислоты; б) фосфорной кислоты к раствору гидроксида натрия. Назовите образующиеся соли.
 - 4. Составьте уравнения реакций с учётом указанных коэффициентов:
 - a) $3NaOH + H_3PO_4 \rightarrow$; $2NH_3 + H_3PO_4 \rightarrow$; $2LiOH + H_3PO_4 \rightarrow$;
 - 6) $4KOH + P_2O_5 \rightarrow$; $6KOH + P_2O_5 \rightarrow$; $3Ca(OH)_2 + P_2O_5 \rightarrow$.
- 5. Определите количество теплоты, которая выделяется при сгорании фосфора массой 1 кг по термохимическому уравнению реакции:
 - $4P_{(TB)} + 5O_{2(r)} = 2P_2O_{5(TB)} + 3010$ кДж.
- 6. Можно ли в качестве осушителя газообразного аммиака применять P_2O_5 ? Ответ аргументируйте.
- 7. В трёх пронумерованных пробирках находятся растворы нитрата калия, фосфата калия, хлорида натрия. Предложите план распознавания веществ. Поясните уравнениями реакций в молекулярной и ионной формах.
 - 8. Составьте уравнения реакций согласно схеме:
 - a) $P \xrightarrow{1} P_2O_5 \xrightarrow{2} H_3PO_4 \xrightarrow{3} (NH_4)_2HPO_4 \xrightarrow{4} NH_3$;
 - 6) $H_3PO_4 \xrightarrow{1} NH_4H_2PO_4 \xrightarrow{2} (NH_4)_2HPO_4 \xrightarrow{3} Na_3PO_4 \xrightarrow{4} Ag_3PO_4$.
- 9. Необходимо приготовить раствор фосфорной кислоты массой 500 г с массовой долей вещества 5 %. Рассчитайте массы необходимых для этой цели оксида фосфора(V) и воды.
- 10. Рассчитайте объём воздуха (н. у.), который необходим для сжигания фосфора массой 1 кг. Чему равна масса фосфорной кислоты, образующейся при растворении полученного оксида фосфора(V)?

§ 40. Важнейшие минеральные удобрения

Удобрения — вещества, вносимые в почву или другую питательную среду для выращивания растений. Они обеспечивают полноценное питание растений, а значит, улучшают их рост, развитие, плодоношение и повышают урожайность сельскохозяйственных культур.

Удобрения содержат химические элементы, которые необходимы для питания растений, но присутствуют в среде их обитания в недостаточных количествах. Чаще всего растения испытывают недостаток таких биологически значимых элементов, как азот, калий и фосфор. По числу питательных элементов среди удобрений выделяют простые и комплексные. Простые удобрения — азотные, фосфорные, калийные — содержат один питательный элемент. В составе комплексных удобрений их несколько, например калийная селитра KNO₃ содержит и азот, и калий.