первоначального капитала, второй — 3000 р., третий — всю оставшуюся часть. Друзья договорились делить прибыль пропорционально внесенным суммам. Какая сумма от прибыли в 10 000 р. достанется третьему другу?

§ 20. Линейная функция и ее свойства

- \bigcirc 3.308. Какая из точек A(-15;2); B(20;-3); C(14;-99); D(10;-1) расположена ближе к оси ординат?
 - **3.309.** Найдите значение выражения -2x + 1 при x = -6; 0; 2.
 - **3.310.** Решите уравнение 5-2(3x-4)=4x-3.
- Решение различных задач на определение зависимостей между величинами приводит к функциям одного и того же вида.

Рассмотрим задачи. 1) Если тело движется прямолинейно и равномерно со скоростью v и находится на расстоянии s_0 от точки A, то расстояние, на котором оно будет через время t от этой точки, равно $s(t) = s_0 + vt$. Например, если $s_0 = 5$, а v = 3, то s(t) = 5 + 3t.

- 2) Если биатлонист проходит дистанцию в 5 км, а за каждый неверный выстрел ему приходится бежать еще 150 м, то путь s, который ему придется пройти, равен $s(n) = 5000 + 150 \cdot n$, где n количество неверных выстрелов.
- 3) Если карта имеет масштаб m, то расстояние между объектами на местности L и расстояние на карте l связаны зависимостью $L(l)=\frac{1}{m}\cdot l$. Например, если масштаб карты $m=1:100\,000$, то $L(l)=100\,000\cdot l$.

Функции в каждом из рассмотренных случаев можно выразить общей формулой y = kx + b, где x — значение аргумента, y — значение функции, а k и b — некоторые числа.

Определение Функция вида y = kx + b, где k и b — некоторые числа, а x и y — переменные, называется линейной функцией.

Например, линейными являются функции:

a)
$$y = 5x + 3$$
; $k = 5$, $b = 3$;

6)
$$y = -\frac{1}{2}x - 6$$
; $k = -\frac{1}{2}$, $b = -6$;

B)
$$y = 4x$$
; $k = 4$, $b = 0$;

r)
$$y = 8$$
; $k = 0$, $b = 8$.

Для любой линейной функции можно найти ее значение по заданному значению аргумента и значение аргумента по заданному значению функции.

Для того чтобы найти значение функции по заданному значению аргумента, нужно:

- Назвать функцию и аргумент.
- ② В формулу функции вместо аргумента подставить его значение.

Найдите значение линейной функции y = 6x - 2 при значении аргумента x = -3.

- ① Функция y = 6x 2, аргумент x.
- ② Значение аргумента x = -3 подставим в формулу функции y = 6x 2 и получим $y = 6 \cdot (-3) 2 = -20$.

Значение функции y = 6x - 2 при значении аргумента x = -3 равно -20.

Для того чтобы найти значение аргумента по заданному значению функции, нужно:

- Назвать функцию и аргумент.
- ② В формулу функции подставить ее значение.
- З Решить полученное линейное уравнение.

Найдите значение аргумента, при котором значение функции y = 8x - 3 равно 1.

- ① Функция y = 8x 3, аргумент x.
- ② Значение функции, равное 1, подставим в формулу функции y = 8x 3 и получим уравнение 1 = 8x 3.
- чим уравнение 1 = 8x 3. 3 Решим линейное уравнение: 1 = 8x - 3; -8x = -3 - 1; -8x = -4; x = 0.5. Функция y = 8x - 3 принимает значение, равное 1, при x = 0.5.

Свойства линейной функции

Область определения линейной функции

Областью определения линейной функции y = kx + b является множество всех чисел.

D(y): все числа

Например, функция y = 8x - 1 — линейная. Поскольку выражение, задающее функцию, имеет смысл при любых значениях аргумента, то ее область определения — множество всех чисел.

Множество значений линейной функции

Рассмотрим линейную функцию при $k \neq 0$. В этом случае переменная y может принимать любое значение, значит, мно-

При $k \neq 0$ E(y): все числа

жеством значений линейной функции y = kx + b является множество всех чисел. E(y): все числа.

При k=0 получим y=b при любом значении x. В этом случае множество значений линейной функции со-

При
$$k = 0$$

 $E(y) = \{b\}$

стоит из единственного числа, равного b. $E(y) = \{b\}$.

Например, множеством значений линейной функции y = -2x + 1 является множество всех чисел. А множество значений линейной функции y = 15 состоит из единственного числа 15, т. е. $E(y) = \{15\}$.

Нули линейной функции

Найдем те значения аргумента, при которых значения функции равны нулю, т. е. решим уравнение kx + b = 0.

При $k \neq 0$ получим $x = -\frac{b}{k}$ — нуль функции.

При k=0 и $b\neq 0$ уравнение $0\cdot x+b=0$ не имеет корней, значит, линейная функция не имеет нулей.

При k=0 и b=0 корнем уравнения $0 \cdot x + 0 = 0$ является любое число, значит, нулями линейной функции являются все числа.

$$\Pi$$
ри $k \neq 0$ $x = -rac{b}{k}$ — нуль функции.

При k=0 и $b\neq 0$ нулей нет.

При k = 0 и b = 0 все числа — нули функции.

Пример 1. Найдите нули линейной функции:

a)
$$y = 4x + 1$$
;

б)
$$y = -5$$
;

B)
$$y = 0$$
.

Peшение. Чтобы найти нули функции, нужно найти значения аргумента x, при которых значения функции равны нулю, т. е. решить линейное уравнение.

а)
$$4x + 1 = 0$$
; $4x = -1$; $x = -0.25$ — нуль функции;

б) y = -5; $y = 0 \cdot x - 5$; $0 \cdot x - 5 = 0$; $0 \cdot x = 5$ — уравнение не имеет корней, значит, функция не имеет нулей;

в) y = 0; $y = 0 \cdot x + 0$; $0 \cdot x + 0 = 0$ — верно при любом значении аргумента, нулями функции являются все числа.

Положительные и отрицательные значения линейной функции

Найдем те значения аргумента, при которых функция y = kx + b принимает положительные и отрицательные значения, т. е. решим неравенства kx + b > 0 и kx + b < 0.

Рассмотрим решение неравенства kx + b > 0. При k > 0 получим: kx + b > 0, kx > -b, $x > -\frac{b}{k}$, т. е. y > 0 при $x > -\frac{b}{k}$.

При k < 0 имеем kx + b > 0, kx > -b. Обе части полученного неравенства делим на отрицательное число, тогда $x < -\frac{b}{k}$, т. е. y > 0 при $x < -\frac{b}{k}$.

При k=0 получаем неравенство 0x+b>0, b>0, т. е. y>0, если b>0.

Аналогично рассматриваются решения неравенства kx + b < 0.

Если
$$k > 0$$
, то: $y > 0$ при $x > -\frac{b}{k}$; $y < 0$ при $x < -\frac{b}{k}$

Если
$$k < 0$$
, то: $y > 0$ при $x < -\frac{b}{k}$; $y < 0$ при $x > -\frac{b}{k}$

Если
$$k = 0$$
, то:
 $y > 0$ при $b > 0$;
 $y < 0$ при $b < 0$

Пример 2. Найдите, при каких значениях аргумента функция y = 6x - 9 принимает отрицательные значения.

Решение. Решим неравенство $6x - 9 \le 0$: $6x - 9 \le 0$, $6x \le 9$, $x \le 1,5$. Функция y = 6x - 9 принимает отрицательные значения при $x \le 1,5$.

График линейной функции

Составим таблицу значений линейной функции y = 3x + 2, соответствующих некоторым значениям аргумента.

x	-2	-1	0	1	2
y	-4	-1	2	5	8

Построим точки, координаты которых равны соответственно значениям аргумента (абсцисса) и значениям функции (ордината). Заметим, что построенные точки располагаются на одной прямой. Проведем ее (рис. 38).

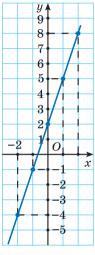


Рис. 38

Графиком линейной функции является прямая.

Так как график линейной функции есть прямая, то для ее построения достаточно найти две точки, через которые проходит прямая.

- Для того чтобы построить график линейной функции, нужно:
- ① Выбрать два произвольных значения аргумента x_1 и x_2 .
- ② Найти соответствующие им значения функции y_1 и y_2 .
- \bigcirc Построить точки с координатами $(x_1; y_1)$ и $(x_2; y_2)$.

Постройте график функции y = -2x + 3.

①
$$x_1 = -1$$
; $x_2 = 3$.

②
$$y_1 = -2 \cdot (-1) + 3 = 5;$$

$$y_2 = -2 \cdot 3 + 3 = -3$$
.

③ Построим на координатной плоскости точки с координатами (-1; 5) и (3; -3).

Провести через эти точки прямую.

④ Проведем через полученные точки прямую (рис. 39).

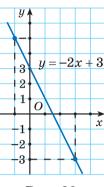


Рис. 39

Геометрический смысл чисел k и b в формуле y = kx + b

Построим график функции y = 2x - 3.

- 1. Выберем два произвольных значения аргумента, например $x_1 = -1$ и $x_2 = 2$.
- 2. Найдем соответствующие им значения функции: $y_1 = 2 \cdot (-1) 3 = -5$ и $y_2 = 2 \cdot 2 3 = 1$.

Полученные результаты можно представить в виде таблицы.

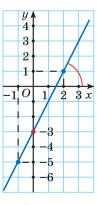


Рис. 40

x	-1	2
y	-5	1

- 3. Построим точки с координатами (-1; -5) и (2; 1).
- 4. Проведем через эти точки прямую (рис. 40).

У линейной функции y = 2x - 3 число k = 2 > 0, число b = -3. Заметим, что прямая, являющаяся графиком данной функции, образует с положительным

направлением оси абсцисс острый угол и пересекает ось ординат в точке (0; -3).

Построим график функции y = -4x + 2. Составим таблицу значений функции, соответствующих двум произвольным значениям аргумента.

x	-1	1
y	6	-2

Построим точки с координатами (-1; 6) и (1; -2) и проведем через эти точки прямую (рис. 41).

Для функции y = -4x + 2 число k = -4 < 0, а b = 2. Прямая, являющаяся графиком данной функции, образует с положительным направлением оси абсцисс тупой угол и пересекает ось ординат в точке (0; 2).

Построим график функции y = -5. Для данной функции число k = 0, число b = -5. Так как k = 0, то значения функции равны -5 при любом значении аргумента. Графиком функции является прямая, параллельная оси абсцисс и проходящая через точку (0; -5) (рис. 42).

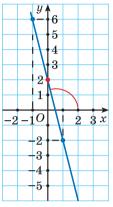
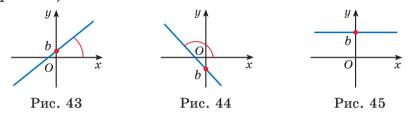


Рис. 41

Рис. 42


Определение Число k называется угловым коэффициентом прямой, являющейся графиком функции y = kx + b.

По угловому коэффициенту k можно определить угол наклона прямой к оси Ox.

Число b — ордината точки пересечения прямой с осью ординат.

В общем случае для функции y = kx + b:

- 1. Если k > 0, то прямая образует с положительным направлением оси Ох острый угол (рис. 43).
- 2. Если k < 0, то прямая образует с положительным направлением оси Ох тупой угол (рис. 44).
- 3. Если k = 0, то прямая параллельна оси Ox(рис. 45).

Взаимное расположение графиков линейных функций $y = k_1 x + b_1$ и $y = k_2 x + b_2$

Рассмотрим функции y = 2x + 1 и y = 2x - 3.

Для функции y = 2x + 1составим таблицу значений.

x	-1	2
y	-1	5

Для функции y = 2x - 3составим таблицу значений.

\boldsymbol{x}	-2	3
y	-7	3

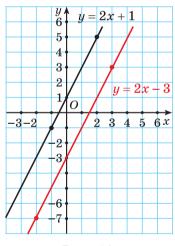


Рис. 46

Построим в одной системе координат графики функций y = 2x + 1 и y = 2x - 3(рис. 46). Заметим, что у этих функций угловые коэффициенты равны $(k_1 = k_2 = 2)$, а $b_1 \neq b_2$. Прямые, являющиеся графиками функций y = 2x + 1 и y = 2x - 3, параллельны.

B общем случае для функций $y = k_1 x + b_1$ и $y = k_2 x + b_2$:

- 1. Если угловые коэффициенты линейных функций равны $k_1 = k_2$, а $b_1 \neq b_2$, то прямые параллельны (рис. 47).
- 2. Если угловые коэффициенты линейных функций не равны $k_1 \neq k_2$, то прямые пересекаются (рис. 48).
- 3. Если угловые коэффициенты линейных функций равны $k_1 = k_2$ и $b_1 = b_2$, то прямые совпадают (рис. 49).

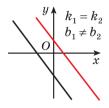


Рис. 47

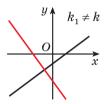


Рис. 48

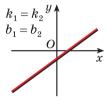


Рис. 49

0

Определение линейной функции

- **1.** Определите, какие из функций являются линейными:
- а) зависимость периметра P квадрата от длины его стороны a;
- б) зависимость объема V куба от длины его ребра x;
- в) зависимость площади S прямоугольника с измерениями 8 и x от x.
- 2. Определите, какие из функций являются линейными:
- a) y = 2x + 5;

- а) P(a) = 4a линейная функция вида y = kx + b, где k = 4, b = 0;
- б) функция $V(x) = x^3$ не является линейной, так как содержит переменную x в третьей степени;
- в) S(x) = 8x линейная функция вида y = kx + b, где k = 8, b = 0.
- а) Функция y = 2x + 5 линейная, так как имеет вид y = kx + b, где k = 2, b = 5.

- 6) $y = \frac{2}{x} 6$;
- B) $y = 12x^2 + 7$;
- г) y = 16x;
- д) y = 6 x;
- e) y = 12.

- **3.** Функция задана формулой f(x) = -3x + 2. Найдите значение функции при значении аргумента, равном:
- a) 3; 6) -1; B) 0; Γ) 5,2.
- **4.** Функция задана формулой y = 5 8x. Найдите значение аргумента, при котором значение функции равно:
- a) -11; б) 0; в) 3.

- б) Функция $y = \frac{2}{x} 6$ не является линейной, так как содержит действие деления на переменную x.
- в) Функция $y = 12x^2 + 7$ не является линейной, так как содержит переменную x во второй степени.
- г) Функция y = 16x линейная, так как имеет вид y = kx + b, где k = 16, b = 0.
- д) Функция y = 6 x линейная, так как имеет вид y = kx + b, где k = -1, b = 6.
- е) Функция y = 12 линейная, так как имеет вид y = kx + b, где k = 0, b = 12.
- a) $f(3) = -3 \cdot 3 + 2 = -7$;
- 6) $f(-1) = -3 \cdot (-1) + 2 = 5$;
- B) $f(0) = -3 \cdot 0 + 2 = 2$;
- r) $f(5,2) = -3 \cdot 5, 2 + 2 = -13, 6$.
- a) 5-8x=-11; -8x=-16; x=2:
- 6) 5-8x=0; -8x=-5; $x=\frac{5}{8}$;
- B) 5-8x=3; -8x=-2; $x=\frac{1}{4}$.

Свойства линейной функции

- **5.** Найдите область определения и множество значений линейной функции:
- a) y = 4x + 5;
- б) y = -6.

а) Функция y = 4x + 5 линейная, ее область определения D(y) — множество всех чисел. Так как для данной функции $k = 4 \neq 0$, то ее множество значений E(y) — множество всех чисел.

	б) Функция $y = -6$ линейная, ее область определения $D(y)$ — множество всех чисел. Так как для данной функции $k = 0$, то ее множество значений состоит из единственного числа, равного -6 , т. е. $E(y) = \{-6\}$.
 6. Найдите нули функции: a) y = 2x - 15; б) y = 7 - 8x. 	а) Решим уравнение: $2x-15=0; 2x=15; x=7,5$ — нуль функции. б) Решим уравнение: $7-8x=0; -8x=-7; x=\frac{7}{8}$ — нуль функции.
7. Найдите, при каких значениях аргумента функция: а) $y=3-x$ принимает положительные значения; б) $y=1,2x+6$ принимает отрицательные значения.	а) Решим неравенство: $3-x>0$; $-x>-3$; $x<3$. Функция $y=3-x$ принимает положительные значения при $x<3$. 6) Решим неравенство: $1,2x+6<0$; $1,2x<-6$; $x<-5$.

График линейной функции

8. Определите, принадлежит ли точка M(-1; 5) графику линейной функции y = 2x - 3.

Подставим в формулу y = 2x - 3 значение аргумента x = -1 и найдем соответствующее значение функции: $y = 2 \cdot (-1) - 3 = -5$, оно не совпадает с ординатой данной точки M(-1; 5), значит, точка не принадлежит графику.

Функция y = 1,2x + 6 принимает отрицательные значе-

ния при x < -5.

9. Постройте график функции y = -x + 3.

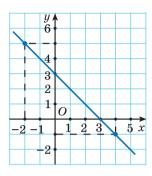


Рис. 50

- ① Выберем два значения аргумента, например $x_1 = -2$ и $x_2 = 4$.
- ② Найдем соответствующие им значения функции: $y_1 = -1 \cdot (-2) + 3 = 5$ и $y_2 = -1 \cdot 4 + 3 = -1$. Полученные результаты за-

пишем в таблицу.

x	-2	4
y	5	-1

- \bigcirc Построим точки с координатами (-2; 5) и (4; -1).
- 4 Проведем через эти точки прямую (рис. 50).

Геометрический смысл чисел k и b в формуле y = kx + b

10. Определите, график какой из функций: y = -3x - 4; y = 2x + 4; y = 4; y = -2x + 4; y = -4x + 2 — изображен на рисунке 51.

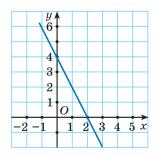


Рис. 51

График функции, изображенный на рисунке 51, составляет тупой VГОЛ направлеположительным нием оси абсцисс. Значит, угловой коэффициент прямой отрицательный $(k \le 0)$. График функции пересекает ось ординат в точке с ординатой 4, т. е. у искомой функции b=4. Из предложенных функций выберем функцию, у которой k < 0 и b = 4.

На рисунке изображен график функции y = -2x + 4.

Взаимное расположение графиков линейных функций $y = k_1 x + b_1$ и $y = k_2 x + b_2$

- 11. Определите взаимное расположение прямых графиков линейных функций, не выполняя их построения:
- а) y = x 6 и y = 49x;
- б) y = x и y = x + 8;
- в) y = 1.5x + 5 и y = 9;
- г) y = 5,6 7x и y = 7x;
- д) y = 0.1x и y = 0.2x + 0.1.

- а) $k_1=1,\ k_2=49,\ k_1\neq k_2$, значит, прямые пересекаются; б) $k_1=1,\ k_2=1,\ b_1=0,\ b_2=8,\ k_1=k_2,$ а $b_1\neq b_2,$ значит, прямые параллельны;
- в) $k_1=1,5,\ k_2=0,\ k_1\neq k_2,$ значит, прямые пересекаются; г) $k_1=-7,\ k_2=7,\ k_1\neq k_2,$ зна-
- чит, прямые пересекаются; д) $k_1=0,1,\,k_2=0,2,\,k_1\neq k_2,\,$ значит, прямые пересекаются.
- **? 1.** Если функция задана формулой y = kx + b, то верно ли, что ее графиком может быть любая прямая на координатной плоскости?
 - **2.** Всегда ли прямая y = kx + b пересекает обе оси координат?
 - 3. Верно ли, что значения функции y = 3x + 1 для всех значений аргумента положительны, а значения функции y = -3x 1 для всех значений аргумента отрицательны?

- **3.311.** Определите, какие из функций являются линейными: а) зависимость длины окружности C от длины ее радиуса r; б) зависимость площади квадрата S от длины его стороны a; в) зависимость произведения P двух чисел T и T от T от
 - 3.312. Из данных функций выберите линейные:

a)
$$y = \frac{3}{r} + 1$$
;

б)
$$y = 3x + 1$$
;

B)
$$y = x^2 + 3x$$
;

r)
$$y = 3 - x$$
.

Назовите числа k и b для линейных функций.

3.313. Из данных функций выберите ту, которая не является линейной:

Приведите примеры каких-либо линейных функций.

- 3.314. Придумайте два примера линейных функций, для которых: a) числа k и b противоположны; б) число k в три раза больше числа b.
- **3.315.** Функция задана формулой y = -2x 12. Найдите значение функции при значении аргумента, равном: a) -1; б) 0; в) 4,5.
- 3.316. Найдите, при каком значении аргумента значение функции y = 13 - 5x равно: a) -2; б) 0; в) 13.
- **3.317.** Функция задана формулой f(x) = 5x 7. Определите: а) значение функции при значении аргумента, равном 2; б) значение аргумента, при котором значение функции равно 3.
- 3.318. Найдите область определения и множество значений линейной функции:

6)
$$y = 5 - 7x$$
;

B)
$$y = 4x$$
;

$$y = -9$$
.

3.319. Найдите нуль функции:

a)
$$f(x) = 9x - 1$$
;

6)
$$f(x) = -6x$$
;

B)
$$f(x) = 0.1 - 2x$$
;

3.320. Приведите пример линейной функции:

- а) не имеющей нулей;
- б) нулями которой являются все числа.
- 3.321. Известно, что нулем линейной функции является число 7,1. Определите координаты точки пересечения графика этой функции с осью абсцисс.
- **3.322.** Дана функция y = 4x 4. Не выполняя построения, найдите координаты точек пересечения графика функции с осями координат.

- 3.323. Не выполняя построения графика функции f(x) = -3x + 4, найдите: a) f(-2,3); б) значение аргумента, при котором значение функции равно -3.5; в) координаты его точек пересечения с осями координат.
- **3.324.** Для функции y = -4x + 9 найдите: а) нуль функции; б) значения аргумента, при которых функция принимает положительные значения.
- 3.325. При каких значениях аргумента функция y = f(x) принимает отрицательные значения:

a)
$$f(x) = 7x$$
;

б)
$$f(x) = 6 - 3x$$
;

B)
$$f(x) = \frac{x}{5} - 12$$
;

$$f(x) = -8$$
?

- 3.326. Приведите пример линейной функции, которая принимает положительные значения для всех значений аргумента.
- **3.327.** Дана функция y = 3 4x. Выясните, принадлежат ли точки A, B и C графику функции, если A(0; -1); B(-2; -5); C(5; -17).
- **3.328.** Функция задана формулой f(x) = -4,2x -- 3,8. Определите, какая из точек принадлежит графику данной функции:

a)
$$M(1; 0,4);$$

б)
$$P(6; -29);$$

б)
$$P(6; -29);$$
 в) $T(-5; -16,2).$

3.329. Выберите функцию, график которой проходит через начало координат:

a)
$$f(x) = 2x - 1$$
;

B)
$$f(x) = -\frac{5x}{3}$$
; r) $f(x) = 7$.

$$\Gamma) f(x) = 7.$$

3.330. Прямая проходит через начало координат и точку $(\frac{1}{2}; 7)$. Выберите уравнение соответствующей прямой:

a)
$$y = \frac{1}{2}x$$
;

a)
$$y = \frac{1}{2}x;$$
 b) $y = 7x + 1;$ b) $y = \frac{1}{14}x;$

B)
$$y = \frac{1}{14}x$$
;

r)
$$y = 14x$$
;

д)
$$y = 3.5x - 7.$$

- **3.331.** В одной системе координат постройте графики линейных функций y = 3x 1; y = -x + 4; $y = \frac{2x}{3} + 2$; y = 3 4x; $y = \frac{6 x}{2}$; y = -5.
- **3.332.** Постройте график функции y = 2x 4. По графику функции определите:
- а) значение функции при x = -1;
- б) значение аргумента при y = -2.
- **3.333.** Определите, какая из прямых y = 4x + 2; $y = \frac{x}{2}$; y = 2 проходит через начало координат. Постройте эту прямую. Пользуясь графиком, найдите, при каких значениях аргумента соответствующая функция принимает отрицательные значения.
- **3.334.** Постройте графики линейных функций y = 5 2x; y = 0.25x 5; y = -4x; $y = \frac{8 3x}{4}$. Укажите функции, графики которых составляют тупой угол с положительным направлением оси абсцисс. Можно ли назвать такие функции, не выполняя построения их графиков?
 - 3.335. Чему равен угловой коэффициент прямой:

a)
$$y = -x + 3$$
;

б)
$$y = x + 3$$
;

B)
$$y = \frac{x}{5} + 3$$
;

r)
$$y = -8$$
?

Выберите прямые, составляющие острый угол с положительным направлением оси абсцисс. Постройте графики этих прямых.

3.336. Из функций y = 4x - 1; y = 4 - x; y = -4x + 2; y = -x - 4 выберите ту, график которой пересекает ось ординат в точке с ординатой 4. Постройте график этой функции. Пользуясь графиком, найдите, при каких значениях аргумента функция принимает положительные значения.

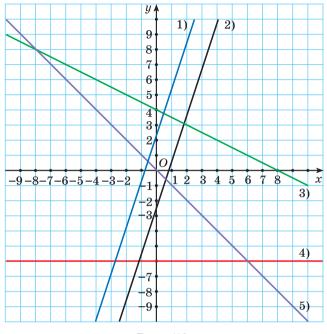
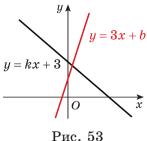


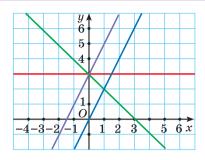
Рис. 52

3.337. На рисунке 52 изображены графики функпий:

a)
$$y = -6$$
;

б)
$$y = -\frac{x}{9} + 4$$
;


6)
$$y = -\frac{x}{2} + 4$$
; B) $y = \frac{12x + 9}{4}$;


$$y = 3x - 2.5$$
;

д)
$$y = -x$$
.

Установите соответствие между формулами функций и их графиками.

3.338. Придумайте по два примера линейных функций, графики которых: а) составляют острый угол с положительным направлением оси абсцисс и пересекают ось ординат в точке с отрицательной ординатой; б) составляют тупой угол с положительным направлением оси абсцисс и проходят через начало координат; в) параллельны оси абсцисс и пересекают ось ординат в точке с положительной ординатой.

- 53 Рис. 54
- 3.339. Запишите формулу линейной функции, график которой параллелен оси абсцисс и проходит через точку A(1; 5). Постройте график этой функции. Запишите координаты каких-либо еще двух точек, принадлежащих графику функции.
- **3.340.** На рисунке 53 изображены графики функций y = kx + 3 и y = 3x + b. Укажите верное утверждение: а) b < 0; б) b > 3; в) b < 3; г) b = 3.
- **3.341.** В одной системе координат постройте графики функций y = -0.5x + 2; y = -0.5x 1; y = 3.
- **3.342.** При каком значении k прямые y = kx + 8 и y = -5x + 6 не пересекаются?
- **3.343.** Укажите функцию, графика которой нет на рисунке 54: а) y = 2x; б) y = 2x + 3; в) y = -x + 3; г) y = 3; д) y = 3x 2.
- **3.344.** Запишите функцию, график которой параллелен графику функции y = 3x 4 и пересекает ось ординат в точке F(0; -5). Постройте ее график.
- **3.345.** Графики функций y = -5x и y = kx + b параллельны, причем график функции y = kx + b проходит через точку N(2; -7). Найдите k и b.
- **3.346.** Постройте график линейной функции, если известно, что он проходит через точку A(2; 1) и параллелен графику функции y = 3x 1.
- **3.347.** Постройте графики функций y = -3x + 8 и y = 5x. Найдите координаты точки их пересечения.

3.348. Не выполняя построения, найдите координаты точки пересечения графиков функций:

a)
$$y = -2x - 1$$
 и $y = 3x + 5$;

б)
$$y = \frac{2x+3}{2}$$
 и $y = \frac{5x-1}{3}$.

- **3.349.** При каких значениях аргумента значения функций y = -2x + 1 и y = -6x равны?
- **3.350.** Существует ли значение аргумента, при котором значения функций $y = \frac{7x-2}{2}$ и y = 3.5x + 4 равны?
- **3.351*.** Постройте график функции $y = 5(x+1)^2 + (x-3)^2 6(x-1)(x+1) 17$.

Проходит ли построенный график через точку A(-35; 33)?

- 3.352*. Две прямые, изображенные на рисунке 55, пересекаются в точке A. Найдите абсциссу точки A.
- **3.353*.** Постройте график функции $y = (x + 1)^2 (x + 2)^2 + 6$. Найдите координаты точек пересечения графика функции с осями координат.

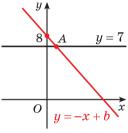


Рис. 55

- **3.354*.** Дана линейная функция y = kx + 4. При каком значении k график этой функции: а) не пересекает ось абсцисс; б) пересекает ось абсцисс в точке с абсциссой -2; в) проходит через точку пересечения графиков функций y = 5 3x и y = 2x?
- **3.355*.** Докажите, что графики функций y = -5x, y = -2x 3 и y = 0.4x 5.4 пересекаются в одной точке.
- **3.356*.** Постройте прямую y = -2x + 1 и прямую, симметричную ей относительно: а) оси ординат; б) оси абсцисс; в) начала координат. В каждом случае запишите уравнение построенной прямой.

- 3.357. Определите, какие из функций являются линейными: a) зависимость площади круга S от длины его радиуса r; б) зависимость суммы A двух чисел 5 и x от x.
- **3.358.** Среди функций y = 5x 1, $y = x^2 + 4$, y = 7 - 8x, $y = \frac{5}{x} + 6$ выберите линейные. Укажите для них значения чисел k и b.
- 3.359. Придумайте два примера линейных функций, для которых числа k и b: a) равны; б) являются взаимно обратными.
- **3.360.** Функция задана формулой $y = \frac{1}{3}x 12$. Найдите значение функции при значении аргумента, равном: a) -6; б) 1; в) 0.
- 3.361. Найдите, при каком значении аргумента значение функции y = 6x + 9 равно: a) -3; б) 0; в) -9.
- **3.362.** Для функции f(x) = 10x 3 найдите: а) значение функции при значении аргумента, равном 3; б) значение аргумента, при котором значение функции равно 7.
- 3.363. Найдите область определения и множество значений линейной функции:

a)
$$y = 5x - 7$$
;

б)
$$y = -6x$$
;

B)
$$y = 10$$
.

3.364. Найдите нуль функции:

$$a) f(x) = 6x + 2;$$

б)
$$f(x) = 3x$$
;

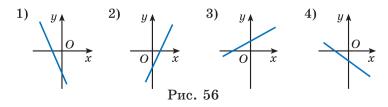
a)
$$f(x) = 6x + 2;$$
 b) $f(x) = 3x;$ b) $f(x) = -\frac{2}{3}x + 6.$

Придумайте пример линейной функции, нулем которой является число 12.

- 3.365. График линейной функции пересекает ось абсцисс в точке F(-4; 0). Найдите нуль этой функции.
- **3.366.** Дана функция y = 5x 10. Не выполняя построения, найдите координаты точек пересечения графика функции с осями координат.

- **3.367.** Для функции y = -2x + 9 найдите: а) нуль функции; б) значения аргумента, при которых функция принимает положительные значения; в) значения аргумента, при которых функция принимает отрицательные значения.
- **3.368.** Через какие из точек A(-3; -10); B(2; 0); C(0; 4) проходит прямая y = 2x 4? Назовите еще какие-либо две точки, через которые проходит эта прямая.
- **3.369.** В одной системе координат постройте графики функций y = 2x + 1; y = -x + 3; $y = -\frac{1}{2}x 2$; y = 6. Определите координаты точки пересечения графика каждой функции с осью ординат. Можно ли определить координаты этих точек, не выполняя построения графиков?
- 3.370. Какая из прямых y = 2x + 4; $y = -\frac{x}{4}$; y = 4x 2 проходит через точку A(0; 4)? Постройте эту прямую. Пользуясь графиком, найдите, при каких значениях аргумента соответствующая функция принимает положительные значения.
- **3.371**. Выберите прямую, угловой коэффициент которой равен -3:

a)
$$y = 8x - 3$$
;


б)
$$y = 5 - 3x$$
;

B)
$$y = -3$$
;

r)
$$y = -\frac{1}{3}x + 2$$
.

Верно ли, что эта прямая составляет острый угол с положительным направлением оси абсцисс?

3.372. Какой из графиков (рис. 56) может являться графиком функции y = 2x - 3?

- **3.373.** Из данных функций выберите те, графики которых составляют тупой угол с положительным направлением оси абсцисс и пересекают ось ординат в точке с положительной ординатой:
- a) y = 4x 3;
- 6) y = -3x + 8;
- B) y = 1 x;
- y = 4x.

Постройте графики выбранных функций.

- **3.374.** При каком значении b прямые y = 3x + b и y = -8x 2 пересекаются в точке, лежащей на оси ординат?
- **3.375**. На рисунке 57 изображен график функции y = -2x + b. Найдите значение b. Найдите значение функции при x = -33.
- **3.376.** Запишите формулу линейной функции, график которой параллелен оси абсцисс и проходит через точку A(-3; -7). Постройте график этой функции.

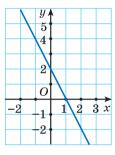


Рис. 57

- **3.377.** В одной системе координат постройте графики функций y = 2x; y = 2x 3; y = 2x + 5.
- **3.378.** Запишите функцию, график которой параллелен графику функции y = -3x + 4 и пересекает ось ординат в точке B(0; 3). Постройте ее график.
- **3.379.** Графики функций y = kx и y = 3x + b параллельны, причем график функции y = 3x + b проходит через точку N(-1; 2). Найдите k и b.
- **3.380.** Постройте графики функций y = 3x 5 и y = -2x. Найдите координаты точки их пересечения.
- **3.381.** Найдите координаты точки пересечения графиков функций $y=\frac{x-2}{2}$ и $y=\frac{2x-1}{5}$, не выполняя построения графиков.

- **3.382.** При каких значениях аргумента значения функций y = 5x 2 и y = -6x равны?
 - 3.383*. Постройте график функции

$$y = 2(x-1)^2 + (x+1)^2 - 3(1+x)(x-1) - 2.$$

- **3.384*.** Дана линейная функция y = 4x + b. При каком значении b график этой функции проходит через точку пересечения графиков функций y = -0.5x + 1 и y = -x 1?
- **3.385*.** Постройте график функции $y = (x-3)^2 (x-2)^2$. Найдите координаты точек пересечения графика этой функции с осями координат.

- **3.386.** Выразите 0,00025 мм в сантиметрах и запишите ответ в стандартном виде.
- 3.387. Проездной билет на месяц стоит 50 р. Студент приобрел проездной билет и сделал за месяц 112 поездок. Выясните, удалось ли студенту сэкономить, если стоимость разовой поездки составляет 1.2~% от стоимости проездного билета.
 - 3.388. Найдите НОД и НОК чисел 125; 1575; 2025.

3.389. Вычислите:
$$\frac{1,3\cdot 4-3,3\cdot 3-1,3\cdot 5+3,3\cdot 4}{1,1\cdot 2+0,7\cdot 2}.$$

- **3.390.** Решите неравенство $\frac{x+2}{15} \frac{7x-1}{5} \leqslant \frac{5-2x}{9}$.
- **3.391**. Выразите 1 тыс. секунд в часах. Полученный ответ округлите до десятых.
- 3.392. На конференцию по развитию искусственного интеллекта приехали 165 делегатов из разных стран. Из них 70 человек говорят на английском языке, 70— на китайском, а 35 человек владеют только французским языком. Найдите число делегатов, говорящих и на английском и на китайском языках.