с окружающей средой и друг с другом. Изучение ботаники дает возможность каждому из нас не только узнать жизнь растений, но и принять активное участие в охране природы и в рациональном использовании растительных ресурсов.

Выводы. ■ Растения — многоклеточные автотрофные организмы. ■ Их тело разделено на вегетативные органы — стебель, листья и корни. ■ Для растительной клетки характерны пластиды, оболочка и вакуоли. ■ Растения обитают на всех континентах Земли.

Проверим себя. 1. По каким признакам растения отличаются от других организмов? **2.** Какие функции выполняют вегетативные органы? **3.** Чем растительная клетка отличается от животной? **4.** Почему листья растений зеленые, а корни нет? **5.** Если оставить доску лежать на траве, что будет с травой под доской через несколько дней и почему это произойдет?

Приведите примеры явлений из жизни растений, которые подтверждают, что растения — живые организмы.

§ 15. Ткани растений

Понятие о тканях растений. Вы, вероятно, неоднократно видели, что во время сильного ветра высокие растения, особенно молодые, сгибаются почти до земли, но не ломаются. Почему это происходит?

Ученые считают, что предками растений были водоросли. В отличие от водорослей, которые в основном живут в воде, растения господствуют на суше. Мы видим их в лесах, на лугах и болотах, по берегам рек и озер. Их выращивают в садах, парках и скверах, на полях и в огородах.

Освоение растениями суши сопровождалось формированием у них приспособлений, которые обеспечили их выживание в новых наземных условиях.

Вспомните, как устроено тело многоклеточных водорослей. У многих видов оно состоит практически из одинаковых

клеток, и каждая клетка способна выполнять все функции, характерные для водоросли. А как у растений? Функции в многоклеточном организме растений выполняют не отдельные клетки, а группы клеток. Одна группа клеток, например, выполняет функцию защиты, другая — функцию транспорта веществ по организму, третья — осуществляет фотосинтез и т. д. Таким образом, для выполнения функций у растений формируются разные виды клеток. При этом клетки каждого вида различаются по строению. Для выполнения определенных функций клетки объединяются в группы, которые называются тканями.

Ткань — это группа клеток и межклеточного вещества, сходных по строению, происхождению и выполняемым функциям.

Таким образом, в результате освоения растениями суши у них сформировались не только органы, но и ткани, из которых состоят органы.

Виды тканей. У растений выделяют несколько видов тканей: покровные, проводящие, механические, основные и образовательные.

Покровные ткани защищают тело растения от потери влаги, перепадов температур, механических повреждений, проникновения микроорганизмов.

Рис. 66. Эпидермис листа герани

Они образованы живыми или мертвыми клетками с плотно сомкнутыми утолщенными оболочками.

Молодые побеги растений покрыты эпидермисом. Эта ткань имеет вид тонкой прозрачной кожицы. Эпидермис состоит из одного слоя живых, плотно прилегающих друг к другу клеток. Клетки часто имеют извилистые стенки (рис. 66). На клетках эпидермиса, как

правило, имеются выросты — волоски. Волоски бывают двух видов — кроющие и железистые. Через последние накапливаются и выделяются различные вещества, часто жгучие. Эти вещества защищают растения от поедания животными. Для сообщения с внешней средой в эпидермисе есть специальные образования — устьица. Они образованы двумя замыкающими клетками бобовидной формы. Между ними имеется щель, через которую осуществляется газообмен и испарение воды.

Со временем вместо эпидермиса образуется **пробка**. Она состоит из нескольких слоев отмерших клеток (рис. 67). Клетки пробки заполнены воздухом. (Почему?) Для сообщения с внешней средой в пробке образуются **чечевички** — разрывы, заполненные округлыми, рыхло расположенными клетками.

Проводящие ткани служат для передвижения по организму растения растворимых питательных веществ и воды с растворенными в ней минеральными солями. Они представлены лубом и древесиной. По проводящим элементам луба органические вещества, образующиеся в листьях в процессе фотосинтеза, передвигаются во все органы растения. Проводящими элементами луба у большинства растений являются ситовидные трубки. Ситовидные трубки — это ряды вытянутых живых клеток, не имеющих ядер (рис. 68). Их ситовид-

Рис. 67. Пробка

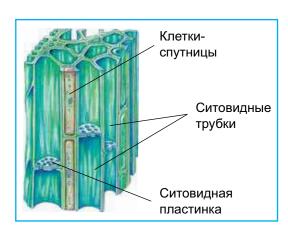


Рис. 68. Ситовидные трубки

ные пластинки пронизаны отверстиями (наподобие сита). Через них проходят тяжи цитоплазмы, по которым из клетки в клетку передаются органические вещества. Рядом с ситовидными трубками расположены клетки-спутницы. Они ускоряют проведение веществ по ситовидным трубкам.

Вода и растворенные в ней минеральные соли передвигаются от корней в стебли и листья по проводящим элементам древесины — трахеидам или сосудам. Трахеиды — это мертвые вытянутые клетки с сильно утолщенными оболочками и заостренными концами (рис. 69). Связь между ними осуществляется через поры. Сосуды — длинные полые трубки, состоящие из цепочек мертвых клеток — члеников сосуда. В поперечных стенках есть сквозные отверстия.

В состав луба и древесины, помимо проводящих элементов, входят элементы других тканей (механических и основных).

Механические ткани составляют внутренний каркас тела растения. Они придают прочность растениям. Механическая ткань, образованная живыми клетками, имеет неравномерные утолщения оболочек (рис. 70). Она придает органам растений гибкость и эластичность. Такая ткань встречается в молодых стеблях и листьях.

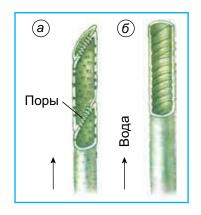


Рис. 69. Трахеиды (*a*) и сосуд (б)

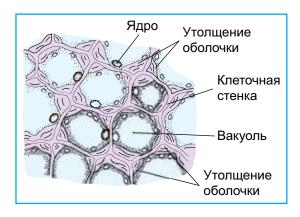


Рис. 70. Механическая ткань, образованная живыми клетками

Рис. 71. Механическая ткань: волокна

Механическая ткань, образованная мертвыми клетками, имеет равномерно утолщенные, одревесневшие оболочки, пропитанные особым клейким веществом. Это делает оболочки очень прочными и непроницаемыми для воды и газов. Различают два типа таких тканей: волокна и склереиды. Волокна — удлиненные клетки с заостренными концами (рис. 71). Клетки плотно прилегают друг к другу. Волокна встречаются во всех органах растения в виде тяжей. Они могут быть рассеяны в проводящей ткани, собираться в группы или залегать сплош-

ным цилиндрическим кольцом. Склереиды представляют собой клетки разной формы с сильно утолщенными оболочками (рис. 72). Склереиды образуют косточки плодов (вишни, сливы, персика), скорлупу орехов. Они встречаются в мякоти плодов груши, айвы, рябины.

Основная ткань (основная паренхима) образована живыми клетками с

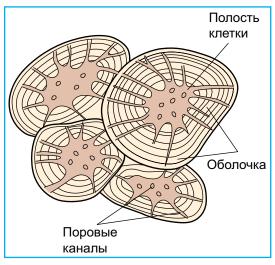


Рис. 72. Склереиды

тонкими оболочками. Встречается во всех органах растения. Основная ткань занимает пространство между покровными, проводящими и механическими тканями. В зависимости от выполняемой функции различают несколько видов основной ткани. Фотосинтезирующая паренхимная ткань встречается в зеленых частях растений — листьях и молодых стеблях. В цитоплазме клеток фотосинтезирующей паренхимной ткани много хлоропластов. Ее функция — фотосинтез.

Часть органических веществ, синтезированных в листьях, передвигается в стебель и корень и откладывается в запас в цитоплазме клеток запасающей паренхимной ткани. В клетках этой ткани имеются крупные вакуоли. В клеточном соке вакуолей откладываются водорастворимые белки, углеводы (сахара). Запасные вещества расходуются в процессе роста растений, а также на обеспечение жизнедеятельности клеток других тканей. Клетки некоторых растений для успешного выживания в засушливых условиях запасают воду.

Образовательные ткани состоят из клеток, которые способны делиться в течение всей жизни растения. Клетки образовательной ткани мелкие, тонкостенные, с крупным ядром (рис. 73). Из дочерних клеток, появившихся в результате деления образовательной ткани, образуются другие ткани растения. Благодаря деятельности образовательной ткани растения растут в длину и толщину. Образовательные ткани, которые обеспечивают рост растения в длину, залегают

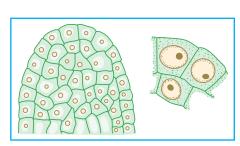


Рис. 73. Клетки верхушечной образовательной ткани (справа — клетки увеличены)

на верхушке растения и кончике корня. Они называются верхушечными образовательные ткани, которые обеспечивают рострастения в толщину (камбий), называются боковыми. Они располагаются в теле растения продольными тяжами или сплошным кольцом.

В состав растительных тканей входит также межклеточное вещество. Оно скрепляет клетки друг с другом, защищает их, препятствует испарению воды.

Выводы. ■ Органы растений состоят из тканей: покровной, проводящей, механической, основной, образовательной. ■ Ткани — это группы клеток и межклеточного вещества, имеющие сходное строение, происхождение и выполняющие одинаковые функции. ■ Появление тканей, как и органов, связано с выходом растений на сушу.

Проверим себя. 1. По каким признакам различаются ткани? **2.** Какие функции выполняют покровные ткани? Механические? **3.** Назовите изменения в строении растений, которые способствовали освоению ими суши. **4.** Сделайте предположение, почему некоторые ткани состоят из мертвых клеток. Свой ответ обоснуйте. **5.** Клетки эпидермиса прозрачны, поскольку не содержат хлоропластов. Какое это имеет значение в жизни растений? **6.** Вам когда-либо приходилось наблюдать, как рубят или распиливают вручную крупные деревья? Как вы считаете, это легко делать? Почему для этого требуется приложить немало усилий?

§ 16. Многообразие растений

Многообразие растений. Растительный мир богат и разнообразен. В настоящее время насчитывается более 400 тыс. видов растений, которые распространены на всех континентах земного шара. Среди них есть гиганты высотой 120-150 м (секвойи, эвкалипты) и совсем крохотные, величиной 0.3-0.4 см (ряска).

Биофакт. Самое большое дерево на Земле — *секвойя гигантская*, или *мамонтово дерево*. Достигает высоты 100 и более метров, ствол до 10 м в диаметре. Живет до 3 тыс. лет. На рисунке вы видите тоннель в нижней части ствола секвойи, через который свободно проезжает автомобиль.

