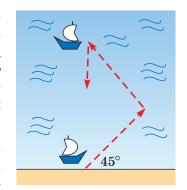
Реальная геометрия

Яхта вышла в море курсом, который составил с линией берега угол 45° (рис. 236). Пройдя 4 км, она повернула на 80° влево и прошла еще 4 км. После этого яхта последовала в пункт своего выхода. Определите угол, который составил курс яхты, идущей к берегу, с линией берега.

При помощи Интернета найдите занятные факты из жизни и научной деятельности ученого Блеза Паскаля.

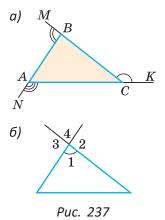


Puc. 236

§ 20. Внешний угол треугольника

Углы треугольника называются еще его внутренними углами. Помимо внутренних углов, у треугольника есть и внешние углы.

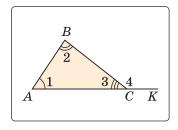
Определение. Внешним углом треугольника называется угол, смежный с его внутренним углом.



На рисунке 237, a углы BCK, ABM, CAN — внешние, так как каждый из них является смежным с одним из внутренних углов треугольника ABC.

При каждой вершине треугольника один угол внутренний и два внешних. На рисунке 237, б угол 1 — внутренний, углы 2 и 3 — равные внешние углы. Угол 4 не является внешним, так как он не является смежным с внутренним углом 1.

Теорема. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.



Puc. 238

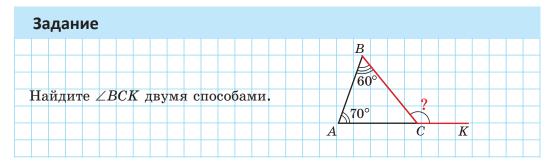
Дано: $\triangle ABC$, $\angle 4$ — внешний (рис. 238). Доказать: $\angle 4 = \angle 1 + \angle 2$.

Доказательство. Поскольку сумма углов треугольника равна 180° , то $\angle 1$ + $+ \angle 2 = 180^{\circ} - \angle 3$. Так как сумма смежных углов равна 180° , то $\angle 4 = 180^{\circ} - \angle 3$. Отсюда $\angle 1 + \angle 2 = \angle 4$. Теорема доказана.

Следствие.

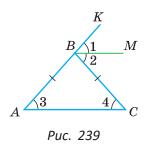
Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.

А теперь выполните Задание.



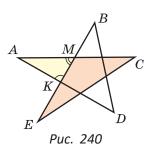
Задания к § 20 РЕШАЕМ ВМЕСТЕ ключевые задачи

Задача 1. Доказать, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна основанию.



Доказательство. Пусть дан $\triangle ABC$, AB = BC, BM — биссектриса внешнего угла KBC, $\angle 1 = \angle 2 = \frac{1}{2} \angle KBC$ (рис. 239). По свойству внешнего угла треугольника $\angle KBC = \angle 3 + \angle 4$. Так как $\triangle ABC$ равнобедренный, то $\angle 3 = \angle 4 = \frac{1}{2} \angle KBC$. Поэтому $\angle 2 = \angle 4$. Поскольку внутренние накрест лежащие углы 2 и 4 равны (при прямых BM и AC и секущей BC), то прямые BM и AC параллельны.

Задача 2. Доказать, что сумма углов A, B, C, D и E «звездоч- κu » равна 180° (рис. 240).

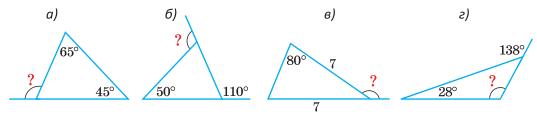


Решение. Рассмотрим треугольник AMK. Сумма его углов равна 180° . Угол AME — внешний для треугольника EMC, поэтому $\angle AME = \angle C + \angle E$. Аналогично, угол AKB — внешний для треугольника KBD, поэтому $\angle AKB = \angle B + \angle D$.

Так как $\angle A + \angle AMK + \angle AKM = 180^{\circ}$, то $\angle A + (\angle C + \angle E) + (\angle B + \angle D) = 180^{\circ}$.

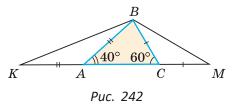
РЕШАЕМ САМОСТОЯТЕЛЬНО

192. Найдите угол, обозначенный знаком вопроса (рис. 241).

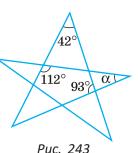


Puc. 241

- **193.** Найдите угол при основании равнобедренного треугольника, если внешний угол при его вершине равен:
 - a) 110°;
- б) 73°:
- в) α.
- **194.** Углы треугольника относятся как 2:3:4. Найдите отношение соответствующих внешних углов треугольника, взятых по одному при каждой вершине.
- 195. Сумма внешнего угла при вершине равнобедренного треугольника и внутреннего угла при основании равна 216° . Найдите углы треугольника.
- **196.** В треугольнике $ABC \angle A = 40^{\circ}$, $\angle C = 60^{\circ}$, AK = AB, CM = CB (рис. 242). Найдите величину наибольшего угла треугольника KBM.



- **197.** Дан прямоугольный треугольник ABC, $\angle C = 90^\circ$, CK высота треугольника ABC, CM биссектриса треугольника ACK. Докажите, что треугольник BMC равнобедренный.
- **198.** В окружности с центром O проведены диаметр AB и хорда AC. Докажите, что $\angle CAB = \frac{1}{2} \angle COB$.
- **199*.** В треугольнике $ABC \angle A = 60^\circ$, $\angle C = 70^\circ$, высоты AK и CM треугольника пересекаются в точке H. Найдите угол MHK.
- **200***. В треугольнике ABC биссектриса BK и высота AH пересекаются в точке O. Угол AOB в 2 раза больше угла ABC. Найдите угол ABC.
- **201*.** На основании AC равнобедренного треугольника ABC взята точка D, и оказалось, что AD = BD, DC = BC. Найдите углы треугольника ABC.
- **202***. Найдите угол α (рис. 243) (если на чертеже необходимо выделить четыре или более углов, то их отмечают одной дугой).



подводим итоги

Знаем

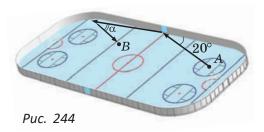
- 1. Теорему о сумме углов треугольника.
- 2. Свойство углов равностороннего треугольника.
- 3. Свойство острых углов прямоугольного треугольника.
- 4. Определение и свойство внешнего угла треугольника.

Умеем

- 1. Изображать внешние углы данного треугольника.
- 2. Доказывать теорему о сумме углов треугольника.
- 3. Доказывать теорему о свойстве внешнего угла треугольника.

Реальная геометрия

Хоккеист посылает шайбу из точки A под углом 20° к правому борту. Шайба, отражаясь от борта, попадает в зону противника и, отразившись второй раз от борта за воротами, выходит в точку B под удар

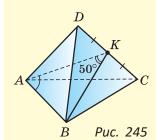


нападающего (рис. 244). Определите угол α , используя закон физики: угол падения равен углу отражения. Из этого закона следует, что угол между траекторией посланной шайбы и бортом равен углу между траекторией отраженной шайбы и этим бортом.

Интересно знать. В Республике Беларусь большое внимание уделяется популяризации хоккея. При участии Президентского спортивного клуба проходит республиканский турнир любительских подростковых команд «Золотая шайба», Рождественский международный турнир на приз Президента Республики Беларусь.

Геометрия 3D

Задача 1. DABC — правильная треугольная пирамида, точка K — середина ребра DC, $\angle AKB = 50^{\circ}$. $Haйдите \angle KAB$ (рис. 245).



Решение. Так как пирамида правильная, то треугольники ADC и BDC — равные равнобедренные, AD=BD, BD=CD, $\angle ADC=\angle BDC$. Тогда $\triangle ADK=\triangle BDK$ по двум сторонам и углу между ними. Отсюда AK=BK, $\triangle AKB$ — равнобедренный, $\angle KAB=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$.

Ответ: 65°.

Задача 2. Сделайте чертеж правильной пирамиды DABC. Отметьте середину M ребра AD и найдите углы треугольника BMC, если известно, что AB = BM.

§ 21. Соотношения между сторонами и углами треугольника

Можно заметить, что в треугольнике длины сторон связаны с величинами противолежащих углов следующим образом: большей стороне соответствует больший противолежащий угол, а меньшей стороне — меньший. Так, в треугольнике ABC сторона AC — бо́льшая, сторона AB — средняя, сторо-