

Домашний эксперимент

Исследуйте возможность получения водорода в домашних условиях.

Возьмите два стакана (или блюдечка). В первый из них налейте немного столового уксуса, а во второй — столько же водного раствора лимонной кислоты. В растворы кислот опустите небольшие изделия из железа, например скобку от степлера, канцелярскую скрепку, кнопку или гвоздик.

Через некоторое время обратите внимание на признаки химических реакций. Опишите их. В растворе какой из использованных вами кислот водород выделяется активнее всего? Расскажите о результатах эксперимента на уроке.

§ 22. Соли — продукты замещения атомов водорода в молекулах кислот на металлы

Когда мы слышим слово «соль», то сразу же представляем себе поваренную соль, которая есть в любом доме. Эта соль является представителем целого огромного класса сложных веществ, который так и называется — «соли». Что же общего в составе всех солей? Как они образуются и как называются? Ответы на эти вопросы вы найдете в данном параграфе.

Состав солей

Вы уже знаете, что в молекулах кислот атомы водорода могут замещаться атомами металлов. При этом всегда образуются простое вещество водород \mathbf{H}_2 и сложные вещества, состоящие из атомов металла и кислотных остатков. Вы уже знаете, например, что при действии соляной

кислоты HCl на металл цинк Zn образуется сложное вещество $ZnCl_2$. Оно состоит из атомов металла цинка Zn и кислотных остатков Cl. Продуктом реакции серной кислоты H_2SO_4 с металлом железом Fe является сложное вещество $FeSO_4$, состоящее из атомов металла Fe и кислотных остатков SO_4 . Такие сложные вещества, в состав которых входят атомы металлов и кислотные остатки, относятся к солям.

Соли — это сложные вещества, состоящие из атомов металлов и кислотных остатков.

В солях кислотные остатки соединены с атомами металлов в соответствии с их валентностью.

Для составления химических формул солей необходимо знать валентность атомов металла и валентность кислотных остатков. При этом пользуются тем же правилом, что и при составлении формул бинарных соединений (см. § 9).

Для солей это правило формулируется так:

Сумма единиц валентности всех атомов металла должна быть равна сумме единиц валентности всех кислотных остатков.

Для примера составим формулу соли, в состав которой входят атомы металла кальция \mathbf{Ca} и кислотные остатки фосфорной кислоты $\mathbf{PO_4}$. Кальций проявляет постоянную валентность II, а валентность кислотного остатка $\mathbf{PO_4}$ равна III.

1. Записываем рядом символ кальция Ca и формулу кислотного остатка PO_4 , а сверху над ними указываем их валентность:

II III CaPO₄.

HH

2. Находим наименьшее общее кратное (НОК) валентности кальция и кислотного остатка:

$$HOK = II \cdot III = 6.$$

- 3. Находим индексы:
- а) НОК делим на валентность атома кальция и получаем индекс при символе Са:

$$6 : II = 3.$$

б) НОК делим на валентность кислотного остатка и находим индекс при кислотном остатке:

$$6: III = 2.$$

4. Записав найденные индексы 3 и 2 правее и ниже символа Ca и кислотного остатка PO_4 , получаем искомую формулу соли $Ca_3(PO_4)_2$.

Названия солей

Соли образованы атомами разных металлов и различными кислотными остатками. Давайте научимся их правильно называть.

Название любой соли состоит из названия кислотного остатка (в именительном падеже), который стоит на первом месте, и названия металла (в родительном падеже), стоящего на втором месте. Например, соль состава NaCl называют хлорид натрия, а соль состава $Ca_3(PO_4)_2$ — фосфат кальция.

Если входящие в состав соли атомы металла имеют переменную валентность, то она указывается римской цифрой в круглых скобках после его названия. Так, соль $\stackrel{\text{III}}{\text{FeCl}_3}$ называют хлорид железа(III), а соль $\stackrel{\text{II}}{\text{FeCl}_2}$ — хлорид железа(II).

В таблице 7 приведены названия некоторых солей.

Кислота	Кислотный остаток	Соли и их названия
HCl	Cl(I)	NaCl — хлорид натрия
HNO_3	NO ₃ (I)	$\mathrm{Ca(NO_3)_2}$ — нитрат кальция
$\mathrm{H_{2}SO_{4}}$	SO ₄ (II)	${ m Al}_2({ m SO}_4)_3$ — сульфат алюминия
$\mathrm{H_{2}CO_{3}}$	CO ₃ (II)	CaCO ₃ — карбонат кальция
$\mathrm{H_{3}PO_{4}}$	PO ₄ (III)	FePO ₄ — фосфат железа(III)

Таблица 7. Названия солей

В химических формулах солей наглядно отражено количественное соотношение атомов металлов и кислотных остатков. Например, формула ${\bf FeCl_2}$ показывает, что в этом веществе на каждый атом железа ${\bf Fe}$ приходится по два кислотных остатка хлора ${\bf Cl.}$

По химической формуле соли можно вычислить ее относительную молекулярную массу M_r , например:

$$M_{\rm r}({
m NaCl}) = A_{
m r}({
m Na}) + A_{
m r}({
m Cl}) = 23 + 35,5 = 58,5;$$

 $M_{
m r}({
m Al}_2({
m SO}_4)_3 = 2 \cdot A_{
m r}({
m Al}) + 3 \cdot A_{
m r}({
m S}) + 12 \cdot A_{
m r}({
m O}) =$
 $= 2 \cdot 27 + 3 \cdot 32 + 12 \cdot 16 = 342.$

Некоторые соли вам хорошо знакомы. Кроме поваренной соли, это, например, сода Na_2CO_3 (карбонат натрия).

Все соли — твердые кристаллические вещества, имеющие различную окраску. К важнейшим природным солям относятся, например, карбонат кальция $CaCO_3$ (мел, мрамор, известняк), хлорид натрия NaCl (поваренная соль), фосфат кальция $Ca_3(PO_4)_2$ (фосфорит) и некоторые другие. Соли находят широкое практическое применение в быту, в медицине, в промышленности.

Соли хлорид натрия **NaCl** и хлорид калия **KCl** в природе часто встречаются вместе в виде горной породы сильвинита. Его крупнейшее в Европе месторождение «Старобинское» находится на территории Республики Беларусь (в районе г. Солигорска).

Это наше главное минеральное богатство. Из сильвинита производят одно из важнейших минеральных удобрений — хлорид калия.

Соли — сложные вещества, которые состоят из атомов металлов и кислотных остатков.

Соли образуются при замещении атомов водорода в молекулах кислот атомами металлов.

Вопросы и задания

- 1. Какие вещества относятся к солям?
- **2.** Из приведенного перечня выберите формулы солей: H_2O , KNO_3 , Fe_2O_3 , $FeSO_4$, Na_2CO_3 , H_2SO_4 , K_3PO_4 , CuO, $CaCl_2$.
- **3.** Назовите следующие соли: Na_2CO_3 , $Fe(NO_3)_2$, $CuCl_2$, Na_2SO_4 , $AIPO_4$, AgCl, $Fe_2(SO_4)_3$, $CaCO_3$.
- **4.** Составьте формулы солей, в которых содержится кислотный остаток серной кислоты и атомы следующих металлов: цинк, натрий, железо(III).
- **5.** Вещество MgSO₄ применяется в медицине, в производстве бумаги, в текстильной промышленности. Предложите способ получения этого вещества и напишите соответствующее уравнение реакции.
- **6.** Расставьте коэффициенты в предложенных схемах. Выберите из них схемы реакций замещения и назовите образующиеся соли:
 - a) $Zn + O_2 \rightarrow ZnO$;
 - 6) AI + HCI \rightarrow AICI₃ + H₂ \uparrow ;
 - B) $H_2O \rightarrow H_2\uparrow + O_2\uparrow$;
 - $\text{r) Fe} \, + \, \text{H}_2 \text{SO}_4 \, \rightarrow \, \text{FeSO}_4 \, + \, \text{H}_2 \!\! \uparrow.$

7. Составьте уравнения и укажите типы химических реакций, с помощью которых можно осуществить следующие превращения:

$$\mbox{HCI} \rightarrow \mbox{H}_2 \rightarrow \mbox{H}_2\mbox{O} \rightarrow \mbox{O}_2 \rightarrow \mbox{CuO} \rightarrow \mbox{Cu}.$$

8. В смеси хлорида натрия и нитрата калия общей массой 120 г массовая доля NaCl в четыре раза меньше массовой доли KNO₃. Рассчитайте массу хлорида натрия в указанной смеси.

Практическая работа 3

Получение водорода и изучение его свойств

Цель работы: получить водород в реакции кислоты с металлом, собрать полученный газ и исследовать его свойства.

Получение водорода

Соберите прибор для получения водорода и проверьте его на герметичность. Положите в пробирку несколько гранул цинка и прилейте к ним небольшой объем $(1-2\ {\rm cm}^3)$ соляной кислоты. Быстро закройте пробирку пробкой с газоотводной трубкой, конец которой погрузите в стаканчик или в пробирку с водой.

Изучение свойств водорода

Физические свойства водорода

Наблюдая за получением водорода, обратите внимание на отсутствие у него окраски. Растворяется ли водород в воде?

Химические свойства водорода

Соберите водород. Для этого газоотводную трубку извлеките из воды и введите в пробирку, закрепленную в штативе вверх дном. Вспомните, почему пробирка должна быть расположена именно так. Через 1-2 мин осторожно извлеките газоотводную трубку и к отверстию пробирки поднесите горящую лучинку или спичку. Какой признак свидетельствует о протекании химической реакции? Какое химическое свойство проявляет водород в этой реакции?

Составление отчета о проделанной работе

Опишите использованные вами способы получения и собирания водорода. Нарисуйте прибор для получения и собирания водорода с пояснительными надписями. Охарактеризуйте свойства водорода, которые вы исследовали. Составьте соотвествующие уравнения реакций. Сформулируйте выводы.

Проект

Исследование индикаторных свойств овощных и ягодных соков

Исследуйте в домашних условиях способность некоторых окрашенных соков изменять свою окраску под воздействием кислот.

В качестве объектов исследования вы можете выбрать соки овощей (свеклы или краснокочанной капусты), соки ягод (черники, ежевики или черноплодной рябины). Для этого в чашку или блюдце налейте немного сока и добавьте к нему такой же объем разбавленного раствора уксусной кислоты (столового уксуса).

Изменяется ли окраска сока? Как быстро это происходит? Какие исследованные вами соки можно использовать в качестве индикаторов для обнаружения кислот?

Поделитесь результатами вашего исследования с одноклассниками, учителем.