7. Составьте уравнения реакций, с помощью которых можно осуществить следующие превращения согласно приведенной схеме:

$$\begin{aligned} \text{FeBr}_3 &\rightarrow \text{Fe}(\text{OH})_3 \rightarrow \text{Fe}_2\text{O}_3 \\ &\stackrel{\searrow}{\text{Fe}_2}(\text{SO}_4)_3, \end{aligned}$$

назовите все указанные соединения.

8. При взаимодействии натрия с водой выделился газ объемом 44,8 дм³ (н. у.). Рассчитайте массу натрия, вступившего в реакцию.

Готовимся к олимпиадам

1. Дана схема превращений:

$$9 \rightarrow 90 \rightarrow 9(OH)_2 \rightarrow 9CI_2$$
.

Определите элемент Э, если известно, что масса его соли $\mathrm{ЭCl_2}$ химическим количеством 0,5 моль равна 104 г. Составьте уравнения всех химических превращений.

§ 31. Периодический закон Д. И. Менделеева

По мере возрастания числа известных химических элементов ученые разных стран пытались их систематизировать. Так, А. Шанкуртуа во Франции, Д. Ньюлендс в Англии, Л. Мейер в Германии в качестве основы для систематизации химических элементов выбрали главную на то время их количественную характеристику — атомную массу. В отличие от своих предшественников профессор Петербургского университета Д. И. Менделеев придавал большое значение не только атомной массе, но и химическим свойствам простых веществ и соединений элементов.

Расположив химические элементы в порядке возрастания их относительных атомных масс, Д. И. Менделеев установил, что через определенное число элементов наблюдается проявление сходных свойств образуемых ими простых и сложных веществ. Так, через семь элементов после лития Li появляется щелочной металл натрий Na, а еще через семь — следующий щелочной металл — калий K.

Точно такую же повторяемость свойств он обнаружил и у галогенов: через семь элементов после фтора F идет галоген хлор Cl.

Литий и натрий — типичные металлы, а хлор и фтор — типичные неметаллы. А как изменяются свойства атомов элементов и их соединений в промежутке между ними? Для ответа на вопрос составим таблицу 4. Запишем символы всех элементов от лития до фтора, а также от натрия до хлора в порядке возрастания их относительных атомных

масс. Эту характеристику элементов запишем внизу под их символами. Там же укажем формулу высшего оксида (т. е. оксида, в котором валентность элемента максимальна) и соответствующего ему гидроксида. Гидроксиды бериллия и алюминия являются амфотерными соединениями и поэтому в таблице записаны и в форме кислот, и в форме оснований.

Таблица 4. Оксиды и гидроксиды элементов в рядах от Li до Ne и от Na до Ar

Химиче- ский знак элемента	Li	Be	В	C	N	0	F	Ne
Относи- тельная атомная масса	7	9	11	12	14	16	19	20
Высший оксид	Li ₂ O	BeO	$\mathrm{B_2O_3}$	CO_2	$ m N_2O_5$		_	_
Основание	LiOH	Be(OH) ₂	_	_	_	_	_	_
Кислота	_	$\mathrm{H_{2}BeO_{2}}$	$\mathrm{H_{3}BO_{3}}$	$\mathrm{H_{2}CO_{3}}$	HNO_3	_	_	_
Химиче- ский знак элемента	Na	Mg	Al	Si	P	S	Cl	Ar
Относи- тельная атомная масса	23	24	27	28	31	32	35,5	40
Высший оксид	Na ₂ O	MgO	$\mathrm{Al}_2\mathrm{O}_3$	SiO_2	P_2O_5	SO_3	$\mathrm{Cl}_2\mathrm{O}_7$	_
Основание	NaOH	${\rm Mg(OH)_2}$	Al(OH) ₃	_	_	_	_	_
Кислота	_	_	$\mathrm{H_{3}AlO_{3}}$	$\mathrm{H_{2}SiO_{3}}$	$\mathrm{H_{3}PO_{4}}$	$\mathrm{H_{2}SO_{4}}$	HClO ₄	
Общая формула высшего оксида	9 ₂ O	90	$\Theta_2 O_3$	9O ₂	$\Theta_2 O_5$	ЭO ₃	$\Theta_2 O_7$	_

Добавим в таблицу два элемента (в соответствии с их атомными массами), открытых позже, — неон Ne после фтора F, аргон Ar после хлора Cl. Как мы уже знаем, это неметаллы, у которых простые вещества химически малоактивны.

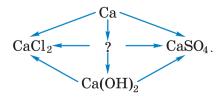
Первый ряд элементов начинается литием Li, высшая валентность которого равна І. Литий — активный металл, а его гидроксид LiOH является основанием. У следующего за литием элемента бериллия Ве высшая валентность равна II. По сравнению с литием металлические свойства бериллия выражены слабее. Его гидроксид проявляет амфотерные свойства. Далее за бериллием следует элемент бор В, который является уже неметаллом. Его высшая валентность равна III, а гидроксид бора относится к кислотам. У следующего элемента — углерода С — высшая валентность равна IV, его неметаллические свойства выражены сильнее, чем у бора. Гидроксид углерода — угольная кислота, у которой кислотные свойства проявляются в большей степени, чем у борной кислоты. Такой же характер изменения высшей валентности, свойств простых веществ и гидроксидов можно проследить и в следующем ряду элементов, который начинается натрием и заканчивается аргоном. После аргона располагается еще один ряд элементов, который также начинается щелочным металлом, и в этом ряду также наблюдается постепенное изменение свойств от металлических к неметаллическим. Проанализировав сказанное, можно сделать следующий вывод: в рассмотренных рядах элементов в направлении слева направо:

- 1) металлические свойства постепенно ослабевают, а неметаллические усиливаются;
 - 2) высшая валентность постепенно возрастает на единицу;
- 3) свойства высших гидроксидов (оснований или кислот) постепенно изменяются от основных к кислотным.

Таким образом, в рядах химических элементов по мере увеличения относительной атомной массы их свойства повторяются через определенное число элементов, т. е. изменяются периодически.

Эту закономерность Д. И. Менделеев сформулировал в 1869 г. в виде периодического закона: «Свойства простых тел (простых веществ), а также состав и свойства соединений элементов находятся в периодической зависимости от величины их атомных весов (масс)».

Периодический закон является одним из важнейших законов природы. Он позволяет обобщать и систематизировать сведения о химических элементах и их соединениях, находить общие закономерности в их составе, строении и свойствах.


Периодический закон имеет большое значение для химии и других естественных наук.

Вопросы и задания

- **1.** Какие характеристики химических элементов Д. И. Менделеев взял за основу их систематизации?
- **2.** Почему закон, открытый Д. И. Менделеевым, носит название периодического? Каков смысл этого названия?
- **3.** Химический элемент цезий Cs сходен с элементом натрием Na, a селен Se с серой S. Напишите формулы оксидов, гидроксидов и солей, в состав которых входят эти элементы.
- **4.** Какой оксид, по вашему мнению, обладает более выраженными кислотными свойствами: SiO_2 или P_2O_5 ?
- **5.** Составьте уравнения реакций между кислотами H_2SO_4 , H_3PO_4 и основаниями NaOH, Mg(OH)₂, Al(OH)₃. Назовите все образующиеся соединения.
- **6.** При нагревании смеси оксида алюминия с оксидом калия образуется соль состава KAIO₂. Составьте уравнение реакции и рассчитайте массу образовавшейся соли, если химическое количество прореагировавшего оксида алюминия равно: а) 0,2 моль; б) 0,5 моль.
- 7. В каком из амфотерных оксидов ZnO или Al_2O_3 массовая доля металла больше? Составьте уравнения реакций этого оксида с твердым гидроксидом калия; с азотной кислотой.
- **8.** Высший оксид фосфора массой 35,5 г прореагировал с водой. Рассчитайте химическое количество и массу продукта реакции.

Готовимся к олимпиадам

1. Дополните схему и составьте уравнения реакций, с помощью которых можно осуществить следующие превращения согласно приведенной схеме:

