§ 24. Моделирование в задаче полета тела, брошенного под углом к горизонту

Пример 24.1. Нетрудно представить, что после броска камень полетит по гладкой траектории вида

Пример 24.2. Решение математической задачи возможно двумя путями. Его можно получить в виде математической формулы. Это аналитическое решение. Второй путь связан с построением компьютерной модели пошаговых вычислений. Это численное решение.

Будем строить компьютерную модель, рассчитывая для разных моментов времени координаты камня в пространстве. Для этого используем метод построения таблиц значений функции в электронных таблицах.

Пример 24.3. Прямоугольная система координат строится в вертикальной плоскости полета камня, и начало координат этой системы размещено в точке вылета камня.

24.1. Постановка задачи (этап 1)

Задача. Брошен камень с начальной скоростью 30 м/с под углом 60° к горизонту. Сопротивление воздуха не учитывать (пример 24.1). Вопросы:

1. Как далеко от места бросания камень упадет?

2. Сколько секунд камень будет находиться в полете?

3. Какова наибольшая высота взлета камня?

4. Как скоро от начала полета будет достигнута наивысшая точка полета?

24.2. Выбор плана создания модели (этап 2)

Для создания модели нужно составить математическую задачу (документальную математическую модель) и решить ее (пример 24.2). Таким образом, получаем план создания модели:

• 3*а* — создание документальной математической модели;

• 36 — создание компьютерной модели с помощью электронных таблиц.

24.3. Создание документальной математической модели (этап 3*a*)

В вертикальной плоскости полета камня зададим прямоугольную систему координат (пример 24.3).

Начальная скорость v (м/с) раскладывается на составляющие v_x и v_u по углу бросания u в градусах:

$$\begin{split} v_x &= v \cdot \cos \Bigl(\frac{u \cdot 3, 14}{180} \Bigr); \\ v_y &= v \cdot \sin \Bigl(\frac{u \cdot 3, 14}{180} \Bigr). \end{split}$$

Правообладатель Народная асвета

Положение тела в полете определяется парой координат x(t), y(t). Зависимость координат от времени t (с) описывается формулами

$$\begin{aligned} x(t) &= v \cdot \cos\left(\frac{u \cdot 3, 14}{180}\right) \cdot t;\\ y(t) &= v \cdot \sin\left(\frac{u \cdot 3, 14}{180}\right) \cdot t - \frac{9, 81 \cdot t^2}{2}, \end{aligned}$$

где g = 9,81 — ускорение свободного падения. Положение камня в полете будем рассматривать в отдельные моменты времени (пример 24.4).

24.4. Создание компьютерной модели (этап 3б)

Исходные данные и начало расчетной таблицы разместим по схеме из примера 24.5. Ячейки первой строки расчетной таблицы заполняем нулями. Вторая строка содержит формулы: A10: =A9+\$A\$5

B10: =A10*\$A\$3*cos(\$A\$4*3,14/180) C10: =A10*\$A\$3*sin(\$A\$4*3,14/180) -9,81*A10^2/2

Следующие 39 строк расчетной таблицы, включая строку 49, заполняются вниз содержимым диапазона A10:C10.

Для наглядности построим траекторию полета камня как диаграмму графика функции (пример 24.6). На странице появится диаграмма с траекторией. Ее границы нужно расширить так, чтобы масштабы по осям стали примерно одинаковыми. Когда диаграмма выделена, к основным вкладкам с инструментами добавляются три новые для работы с диаграммой.

Оформим диаграмму с помощью инструментов вкладки Макет (пример 24.7). Пример 24.4. Пусть начальный момент равен 0, а последующие моменты отстоят друг от друга на одну и ту же величину 0,2 с, называемую *шагом* времени.

Пример 24.5. Схема размещения данных и заголовков модели.

1	A	В	С	D	E
1	Модель полета тела				
2	Исходн	ые данн			
3	30	: начальная скорость (м/с)			
4	60	: угол бросания (градусы)			
5	0,2	: шаг времени (с)			
6					
7	Расчетная таблица				
8	Время	x(t)	y(t)		
9					

Пример 24.6. Для построения диаграммы выделяем диапазон В9:С49 (второй и третий столбцы расчетной таблицы) и на вкладке Вставка в группе Диаграммы выбираем диаграмму Точечная. В последних версиях электронных таблиц удобно выбрать диаграмму в списке всех диаграмм. Чтобы открыть список, надо щелкнуть по стрелке в правом нижнем углу группы и выбрать вкладку Все диаграммы.

Появляется панель с изображениями разновидностей диаграммы, на которой, пользуясь подсказками, выбираем диаграмму Точечная с гладкими кривыми и маркерами.

Пример 24.7. В группе Подписи с помощью кнопки Легенда удалим легенду с диаграммы. С помощью кнопки Название диаграммы добавим над диаграммой название «Траектория полета». С помощью кнопки Названия осей добавим для горизонтальной оси название «Дальность», а для вертикальной оси повернутое название «Высота». Пример 24.8. Когда в столбце y(t) найдены указанные соседние строки, моментом падения можно считать среднее арифметическое значений времени столбца «Время» расчетной таблицы в этих строках. Дальностью падения считается среднее арифметическое значений столбца x(t) в этих же строках. Наибольшая высота взлета ищется как максимальное значение в столбце y(t).

Можно заметить, что когда координата y(t) становится отрицательной, модель является неадекватной (камень оказывается ниже уровня земли).

24.5. Исследование модели (этап 4)

Модель адекватна реальному процессу только с допущением об отсутствии сопротивления воздуха и для положительных значений координат.

24.6. Получение решения задачи (этап 5)

Чтобы ответить на вопросы задачи, анализируется расчетная таблица.

Чтобы ответить на первый вопрос, по числам в столбце y(t) находятся две соседние строки, в которых стоят числа разных знаков. Ответы на остальные вопросы находятся в других столбцах этих строк (пример 24.8).

Упражнения

1 Повторите на компьютере рассмотренное в параграфе решение задачи полета тела, брошенного под углом к горизонту.

2 С помощью модели полета тела подбором найдите угол бросания, при котором камень с начальной скоростью 40 м/с упадет в 100 м от места бросания. Найдите время полета.

3 Подбором найдите начальную скорость, при которой камень, брошенный под углом 60°, упадет в 100 м от места бросания.

4 Подбором найдите начальную скорость, при которой камень, брошенный под углом 60°, собьет неподвижную цель на удалении 100 м и на высоте 20 м.

Указание. Для обозначения цели на диаграмму нужно добавить маркер цели.

Диаграмму нужно выделить и на вкладке Конструктор в группе Данные щелкнуть по кнопке Выбрать данные. Появляется диалоговое окно Выбор источника данных, в котором в зоне Элементы легенды (ряды) следует щелкнуть по кнопке Добавить. Открывается диалоговое окно Изменение ряда, в котором вводится имя ряда «Цель 1», значение X, равное 100, и значение Y, равное 20. Кнопкой ОК закрывается одно окно, затем — второе. На диаграмме появляется маркер цели.

5 Подбором найдите угол бросания, при котором камень, имеющий начальную скорость 40 м/с, собьет неподвижную цель на удалении 60 м и на высоте 30 м.

6 Подбором найдите начальную скорость с углом бросания 70°, при которой камень собьет неподвижную цель на удалении 50 м и на высоте 60 м.

Подбором найдите начальную скорость и угол бросания, при которых камень собьет две неподвижные цели: первую — на удалении 50 м и на высоте 30 м, вторую на удалении 100 м и на высоте 5 м.